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* - . PREE’ME
This text aims at'restoring what is, ina eense, a "lost" subject. There
_+ 15 & widespread practice of iﬂciuding‘hnalytic geometry material in the ealcu-
1ue program, but when this is- accomplished, Analytic Geometry, as & coyrse of
study, disappears end,vhet remains of it 1s the part immediately useful to &
study of celculue. You will find a smich more varied selection of topice in
this bock than you would see ina Q&}iulus course.

In & book devoted to the interplay betveen.algebra and gecmetry you would h
expeet, @o be. called upon-to exhibit considerable dexterity in a&gebraic mani -
pulations as well as to recall previous, experiences with gecmetric figures and s
theoreqs. You will not be disappointed. It is also eeshyed that 3b?‘knov tne“" '

elementary notions of trigonometry. .o

A deliberate effort vas.made to ‘tie this text to previous SMSG iéxts, so,
~you will find the usual language of sets, ordered pairs, mumber properties,
etc.,,with ‘which you have had some acquaintance. Tpis flavor is perhapé what ;
distinguishes this book from others in the field. ,For example, the- tréatment
of coordinate systefis in Chapter 2 depene; upon the postulates of SMSG

Geometry. !

]

_ . Hereis one word'of'advice. _ The early chapters ;re‘fundemental to every-
thihg which follows. Study them until they seem to be old friends; do nqt
hesitete to return to them later for a fresh lqok. Another thing you might
'uetch. The related, ideas of vectors, direction numbers, and parameters are
used extensively to siMplify and unify the various topigs. Look for this

feature. . - ' o

0
( The theoreqp and figures are numbered serially within each chapter, e. g., ‘
_Theorem 8-3 is the‘third theorem of Chapter 8 Figure .2 1s the second figure
to sppear in.Chapter 5. If an equatien ie to be referred o, it is assigned
a cbunting number, which 1s then displayed in the left margin. The cognting
beging at one for each section. Definitions dre not numbered but may be found
-, by referring-to the Index. ‘ a . .
The writers hope they have recreated the beauty of, Anéfytic Geometry 1in a '
new SMSG setting, and they ﬁ;“ther hope that you will en‘joaar and eprofit 'oy the

adventure you are abouf, to underteke. Bon Voyage.

]
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1-1. Whet Is Ana;ytie Geametxy?

1nfluentia1 mthemtics f,extbook ver published. There are \mdouhtedly nmv ‘
tre.ces of 1t to be found in the text :mu used in your high school conrse. ._ C e )

.

Until the 17th centm'y geome wasg studi.ed by wha‘ﬁare known as -
synthetic methods. The postulatea- ealt with eucir qeomet;xd.c notiows' poixit, '
line and angle, ami 1ittle‘0r no use was made Of mmbera In the Elements, =
for example; line segments do not have lengths _ - : e -

-

Then in the early part pf “the 1Tth century . there occurrefl the grea.test '
advance in geometry since’ Euclia It was not the-work of one man--such
advancés seldom, if ever, are. Inétee.d » 1t occyrred vhen the "intellecma.l
climate” wag res&y for it. .Revert.helees, ‘there was one man whose pame is 80
universally assoclated with the new geometry that you ahould know it. That
man was René Descaxrt,es, a French mathematician and ph!.losopher‘ vho lved
from 1596 to 1650. The essentiaml novelty in ‘the new geometry was that it
used algebraic methods to solve geometric pmblems Thu% it brought together S .
two sub:jects which until then had rema.ined almost indepenﬂent. . o

-

: 'Ihe ,ink between geometry and algebra is forged hy coordinate sys?ems

In essenee, a coordinate system is a correspondence between ‘the points of -some
"space” a.nd certain ordered sets of numbers. -(We use guotation marks hecause
the space maar be a curve, or the surface of a sphere, or some hther set of
points not usually thought of as a gpace.) -You are &lready familiar with 8
number of different cacrdina‘be systems, some Studied in earlier mat.hemtics
.courses, others met with in other fields; such as geogr . In elementiry \ .
algebra. you intmduced coordinatm into a plane by drawlng two mutually .
- perpendicular lines (axes) in the plane, chcosing a positive direction on e‘a.ch
and a unit length common to' both, and a.ssociating with eachy point the ordered
palr,of real numbers reprqsentm'g the directed distances of .the point from tHe
two axes. The location of a point on the earth's surface is often, given *n

U L 8} . ‘ -




terus of latitude and 1 ngitude. An e.rtille:‘ymn smnetimes 1ocates a t.arget L
by saar!ng how far away 1\§ 4s, sand in vhat direction it lies with respect to
.an srbit.rary Tixed direcﬁion establi shed by setting up an aiming post;. This
1s what is caued a polar\ coardinste systen’ for ‘the plane. |

y  Figure 1-1. ‘ .
L 3
A point P on a/right eircular cylinde;- could be identified by means of
the directed distance z , and -the measure gf the angle 6 shown in Figure 1-2.,
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Ii' insteed of one righlt circular cylinder, we cmider &11 such cylin&em

with the same &tis,ﬂemlmteamrpommspmbygivingthermm r -
of the cylinder on which it lies and its 2z~ o- eoordinstes on that
cylinder. 'Ibe msult is called & cylindrical c?Lma(e syst;em for space. |

Afhrona.doughnut(apointonatom)couldbql bymeansof
the measures (in ‘degrees, radi,a.na,..p:;'amr other convénient unit) of the .angles
8 and ¢ shdim in the figure below. ° _ )

Y

- e

o

.
. —— 4

Figare 1-3
- The position of' an artificial satellite at a‘certain?mmeent could be ¢
 specified by giving its vertics) ‘distance from the earth's surface (or center)

- and the latitude énd longitude of the point of the earth's Surface directly.

-

The result’is called a sphei-ical co?dinate system for space. B - |
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. A coordinate syst?em could be set i'ip'even“for a "épéce" whigh..t?e qu.ite
irreg.xlpa: We ms,v hote that your home address is a set of coordinates with
suhdch we locate & particﬂ-ar point, your home, relative to the streets and
‘ nusg Of the town you live in. "These streets md a,venues, vhich need not .
'e straight, are the "coordinatelines" s and. the- mmbers of the houses on

hem indicate, in some re .nable , the-positions along these- 11 e .

LI
Once a coodtr inate system has been established, interesting se

points can be represented. by suitable conditions on their c@rdina'tes ';Ilhe

equation <™ o -

u, / 2x -y +4 =0 . ) .

represents the line thrqugh the points (-1,2) and (2‘,94’ , where we aré
using rectangular coordifhtes. The inequality

/} Ry -2P<y

. ‘
represents the set of points not as far as 3 units distant from, (0,2) , in
other, words, the interior,of the circle with radius 3 and center {0,2) .

The .equation © -

. o 2.y -0
. .
f‘epresentsr the. two lines through the erigin making angles of 15° ana !35°

withthexa:ds o C . *

By mee.ns of coerdinate systen}s we can, if you like} ari thmeti ze ‘geometyy.
Problems a.bout. geometric figures are replaced‘nx problems about nubers,
ﬁmctibnﬁ, equations, inequalities, and sp forth. Thus one -can bring to bear
the extensive body of knowledge about algebrsa, 'trigonometry , and the ealculus
which has been developed lsrge];,r since the+»13th century (In this text we
shall use no calcu.lns , But if later you study. the subject, you will see that

L4
* The def¥nition of analytic geometrx given above is of the sort found in

-

it would havt been, in some places, rather useful $o us,) .

di\ctionm’ieg rather than the sort usec; in mathematics. It tells us not how a'
technical term will be used in the remainder of this BooRMout hdw & non-
technical phrase i sf commonly used. * As th® ‘discussion above indicates, both
. the subject mat'ter and the methods of .t}}j,ﬁ book are &lready fairly iamilia.r

) to you You have even put them vogether in ea\rlleg coursek. For_example,

you Know that the gra.ph (in a pla.ne) of an equa.tia of the form

(l) ) r/ e\xﬁi}ay+c—0 e

{5 a sf.raight l!ine, an’l tha$ the pmblem of ffading the intersection of tm
lines in e plane can be solvi¥ by fifxding the sciution of a system of two

t“ . &

1117 -
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equatio.ns like( rou‘also know tnee! the bcus,éf 511 the ,poipts in a /

e plane which ‘@ ﬂar from a fixed line es they are from a fixed point-not”
A J
“on- that ling gf.hs 1§ g,au,ed & parabols) has en equa.tion—of the form

,“' e .

= . D < 2' . . L
- L]
Vo ::’-I-cx - ) .u
ﬁ h - - .

O‘ B

Af you chooﬁe-the pmpe coord.in@ﬁe system. In this book ve shall teke 'up
many such pmulems ’ antl By the time you reach the end of, it you will have -
. some, mee of the Poxee;- of ﬁhe ‘new met.kmd which Deseartes and hie— contempo ' "

LI
raries introduced intoy geametry. , ‘N S \-\‘-/

L . . ‘ - ‘.
*1-2. m Study Ana.'lytic Geometry? . - .ot - ’

-

oy -

-

* A chief reaéo\n for studying agalytic geemetry ie the pover of :Ltp method.s

T Certain problems can be solved more readily, more d.irectly, and more sin@]y by - V‘

such methods. T#is is true nbt only for the problems of geometxy.and other .

" branches of'methematics , but dlso for a wide variety of applications An - .
statistics, ’ meice, engineering, and other scientific and teehniee.l gields.

Using algebraic methdd.s to solve geometric pmblems pefmits. eqsy generali-
-zgtion. ' A result obtained in ome or %wo dimemsions cen' often be extended, at
enee to three or more dimensions. - It is often Just as easy to prove a relation
in space of‘ n dimensions as 1% weuld be in space of two or three dimensions.

" In fact, much of the work higher dimensions is essentia.uy algebra wit& X
, ‘gemetric terminology. X

/ ’ .
. Analy'tig geometry ties together and applies in ® new and interesting |
context what ytm have be.en learning about mumber eyat.ems , alge , geometry, ,/‘,
'« and trigonometry. It sheuld lead to mastery in handling meath ics you |
nave’ studied previously. Ae you study this course. yeu will hdve nany oppor-
tunities to use knowledge and methods ¢hat constitute your present mathematical
' equipment. You will also lee:m new methods+~ Sometimes the new methods will

-

seem awkward or d.iffieult at first when compared with metheds you have beén. ° “
‘using.’ You should- keep in mind that w}it you are NMoing is learning abcut the __—
me'!nods and how to- apphr them. . , MRS \

As & student, yvou mgy at times be ‘d.'irected to use a certain method to
ga.in facility with ‘1t Real'@m‘elems , whether.in mathematics, science, or
1ndustry, do not come equipped With a mathematical setting and a prescribed

: method9 By the end of this course -you shau,ld have a greetexa' variety of

mathematical weapons in your arsenal, and more g.v' el ) Ones. You should be ‘ -
. N ‘
*  more sble then to seléct effective mathematical o o attack proplems.
Thus Enother impore'ant reason for gtudying ane.].ytic geemetry “is the value it .

(_\: . - o f s

Q . . B 122“
e B . , ,




T have i’or yol in f\xture_ murses--not Jus-t cdurses in ma{‘.hematics hut in
,\&cs, statis'bics,?gineering, and scienee in’ general 5 - .

AR . py

‘f' «'iliex:e is a cu;vrent ti'eqd to’ combine snal;ytic semnetry agd ca.leulus. X When '

this pccur.ﬁr, much’ that “is: of value’in e suf::]ect of ‘ana.;l.ybiq geonftry :Ls lost. 3
‘ Becmse_ (d ceurse' is. primm‘ily ceL’Lculus, ~only such parts: of analytic ge-
. .~ ometry afr imefiiatély .useful in the calculus are kept. By ‘studying-a

sepa.rate dburse in analyt.ic gemnetry, you have 8 better oppqrtmty to und.e.r- v

,,‘ stsnd the coherence of the subject the &1versi,ty of itl met.hods > and the' -~

wid.e variety of’problems to vhieh it. may%e applied. “ o < v

LI
. . S M . .
. . % )

One of the ;nost ;Ebportmt :nea.sons Jor st\zdy:;ng analy‘bic: gecuEQ is~ to
ga.;Ln und:E{stancling of the itﬂ:erplay .of alge‘bra -and geometry. Algebra contri-

" bupes to: sma.hrtip gemetry by prgv—lding & way of writing _rel%xships 5 _ '

thod not. only ofs proving: known 1 ults but Blso, of deriving previcmsly une -
Gemetry contribu s to algebra by provlding a way of visu- o

. aiizin_g a.lgeb‘raic relgtions. '.l’n 8 visualization or picture, hglps you to .7
undé;-stand. the - algebreric discusslon. In the fremevork provided'hy a coordinate .-
system, you wi%’l do geometry by doing a.'Lgebra, and see algebra by lmking at
geometry _Algebra and/gecmetry ure intermeshed in andlytic geqmetry, ea.ch
s;t.rengthens and illuminates the other.

-

-

. -
- e - . Lo
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- _
R In our previous study ‘of ma.theﬁatioé \ge have alred:\y éncounitered e.t‘
29 least threg- rajor mathemaﬁic‘al etructlgee, a.ritk.xmeﬁie, the algebra. of ,r$

*. numbers, and Euelidéan geemetry. »The. great-Ge!'m mathemtit:ian, n,avid ( .
" Hilbert (1862—19&3) , Showed that all‘geometrie prpblem could be reduced to s
problema in alsebre. Ouf' goal here neéd not.be 'so drastic.r We are not
' trying ;to,_eliminate the need ft:r geumet;y, ‘but rather. to eet,abliah con-
' nectione befveen algebra® and geometry. * This wlll enable ue to*bring to'bear .
son & single problem both the pover of. nlgebraic téchnigues and the structufal . Y
. cla.rity of g@mﬁtry.- ' ) ‘ T : '

-l‘ h
- . -
< - LX)

T It turns dut that we are aple to effect these connections between : S

*

a.lgebra. and geometry.by est,ehli i

certain one-to-pne eorrespond-eee ‘
' iLtne gnd between real numbers* and engles.

| Vo'
< In our etudy of‘ geometry ve adoptedza.n i rtent postuIete: /

between real numbers and poih

The Ruler Postulate. The pointe of a line ca.n. be pleced in corre-( )
spondence with the real numbers .in such a -that Y !

&

(1) To every point of the 1ine there corresponde exactly one

o real number, * ! ‘ ) . . ’ ' N
- (2) .To every resl numper there corresponds exactly one point '
of the line, and - L ‘
§

(3) 'I'he distance between two points is the absolute ve.lue of
t.he differenee of the eorresponding numbers.

. ; f

We defined such a correspondence to be & coordjnate system f'or the line, We
_‘e&lled the number corresponding to'a gi-ven point the coordinate of the pointz.

In order to ass%x a coordinate, system to & given line we adopted
'a.hother postulate: e ‘
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The Rulexr Plscement Postulate. Given two proints P s.nd Q,

. -of a line, the coordinéte systefi ca%e chosen in such & o -
' wsy that the’ coordinate of P 18 zero and the coordinete- .
of is sitive. -~ .o R L
A Q PO )‘ - ) ) . - . . ‘ . e f ] . .

" We found these postuletes 40 be extremely nseﬂnl when we defined such concepts
as congruence for segments, and oxder or-betweenness for collinesr points.
We shall,want to review and extend thebé idess 1n this. text, for it is

‘ through coordinate systems that ve are able to relate the algebrs of‘numbers -
to the. geometry of sets of points. He ‘shall first ektend our notion of a .

-

coordindte system. T ' , S =

"In our theoretical development of geometry we had ne need to mention
units; the measure of distance between each pair of points vas’ aluays a fixed,
though unspecified, number. We did not need to know whet these numbers were,

but .only how the measure of distance between one palr of points compared with

the measure of digtance betweeng second pair of points. Was the first nunbea -
as large as tfle setond? Wss it larger? ~ Was, it twice as large? In applying e

our theoretical khowledge to specific problems we found that we. could use any
~

units we pleased 1f we were consistent, 4in our ussge throughout each given _
problem. If we did é problem in inches rather than in feet the nuxbers ve- ' ns
obtalned were twelve times as great, but equal distances were. still measuxed

by equel numbers. A greater distance had a greater measure, and a shorter
distance, had a smaller mensure, but the ratio of these distences was ‘the

same for both choices of unit. Al though "the measures of distance between

pairs of points depended upon the choice of units, withén a given problem the’
measures in one nnit were always proportionsl to the corresponding measures

1n another unit. ) .

1

What we discovered in effect was that reletive to a-givem point on.s
line there are not just two coordinate systems for the line, one oriented in
eech direction. For eech point and each sense of direction on the 1line tﬁere’
is a coordinste system for the line corresponding to each choice of unit for
measuring distsnce{ In each of these coordinate systems the%rientation
corresponds to one sense of direction for thesline and the coordinate of thq&
given point is gero. Since there are infinitely msny cholces of unit, theke
are infinitely many coordinate systems for each point and sense of direction ‘

on the line.
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¢ ", Im this text we are not attempting to .develop & rigorous deductiv
systenm as we did in geometry. Rather we yant to develop and extenc th
e conceg;s and techniques which we can use o solve problems. Qur basic

~technique will be to intreduce coordinate systems It is so important
. utilize the freedom to choose cd®rdipate systems on a line that we stg
fol wing guiding ﬁrinciple- N ' . "
v " e

Py

LINEAR CQORDENATE SYSTEM PRINCIPLY., There exist ceordinate

A‘ ' systems for any line su(‘hhat ' S . -
a (1) 1 P and Q are any two distinct péints ongthe line

“ - and p and’ q are any‘twn distinct real numbers,
there is a cgcrdinaté system in which the eoordinate
of . P 1is p 'and the coordidate of Q is gq.

(2) ’if P,’Q, R, and § are collinear points with

coordinates p, q, r, and s respectively in one
coordinate system and p*, qf, Y, s? respeetively
in a8 second coordinate system, if P and Q. are )

distinct, and if R and 5 are distinct, “then
) o

p* - gt et -st] 7
o -al It -] :

DEFIRITION, If a coordinate syastem on a line assigns the ‘

coordinates r and s to the polnts R and €, then

|r - 8] 1is the measure of distance between R and S .

relative to the,coordinate system. -
NS

This nicety of e:z%ession is necessary when we are trying to explain and

distinguish concepts

we may speak more colloquially, and use vhatever level of precision is

appropriate to the topic and segting. What 1s importans is that a lack 6f ', )
; ‘

- preclsion ghould reflect our choice and not our ignorance.

For convenience, "and if there i5 no danger of ambigulty, we shall
this the distance between R ama S .

. We denote the distance between R and S By d(R,S) -

ich are oftéh confused. As our understanding increases,

e *\'
- . )
e . .

-

to ’
te the

~

call
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Wherever the cqntext makes clea: that only & single coordinate system ..
is beiﬁg considereﬁ we shall adopt the eonvention that a is the .

cocrdinete point of ‘A, b is the coordinate of point B, c 1is thé
cqordinate of point Ga, ...+ We shell call the point with coordinate zero
the, 0 arigin of the coordinste gsystem. The point with cocrdinate one is called “
the unit-point '

* e ¢ -

4 . ® -

It is sometimes eenvenien& to thing-of the directed distance from R
“to ' , which we define to be the number s - r ., We shall need this wea

in bhe next section.‘ . ~* . L.
\ e P w

2

We shall @lso find it negessary to use the notion of a dfrected segment

whigh we define to be th€ set whose ‘elements ‘are the segment and the ordered
pair of its endpoints, or, (RS, fk S)} . We shall denote such a diredted
segment by RS . The directed segment RS ig- said to- emanate fréom R and,
terminate in S . However,*we should note that directed distance is related
to the choice of cbordimate systqn and a dfrected segment is related to the
choice of order for its enapointé The length or magni tude of the directed
segment RS 1is the length of RS, or &R,S) . The ordering of the pair
of &ndpoints (R,8) 1s related toour intuitive notion of sense of l .
)direction, from R to S . We shall find that this alliance of the concepts

*

.

of magnitude and sense of direction in direeted segments is basic to our

develcpment of a powerful teol of analysis in Chapter 3.

\.

We conclude with two examples illustrating some of the ldeas introduced

&b‘(}lfe . - : ‘ . a
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| ME L. Let us perform a practical: experiment.A Pake.a.ruler vbich
" ks m&rked ‘in inches and another Hh!.St; is marked in centixggtgrs, use eaeh of B
these )rsulers td- measure tt’dist.ances between ttfe- pa.irg of labeled points ‘1:1 e '
F;[,g.ure 2-1. Record wur results ‘and ' compare them. -
. ¢ . o L
?.\ - '
R . <_L - v ¢ ° ‘ . .
N . ~A ot . . N - ! .
. . ‘e . . : . Pl
I,\\\ ‘ 2 )
- * / ' N ‘\\ b ' . -
/ - ~ DV -
j,v - / ’\J\ . “ . Pl P
, ~ ' - - ‘. es . ®
’ / . SN ) 1
- / * \\ . i &
- / . ' \ ' N
/ [ ] ) . \\ = ‘- ‘P
. / ' NN
-/ . ~
. 3 .
~
/ ) : \\
/ b ~
/ . N
/ / L o~
< —_ —_ —_ —_ e
B P r c
- “ \ .
: : ) L S )
C . _ Figure 2-1 : ) - ~
‘ ,; » N | , . .

Discussion. If a ruler is old or damaged at an endz we préfer not to
measure from thd ernd. When we made the measurements required abovej we \
happeﬁed to piaceithe we#t point of the coordinate system on the inch ruler
at ‘A and found that in this case the ‘coordina-eQ\ of B and C were

[

3 g. and 5 2 respectively When we placed the unit point at. B , we found

4
the coordinate of C to be 6 % . Since the measure of distance is the .
¢ :

absclute value of the difference between the coordinates, we coneluded tRat

o

in inches d(4,B) ='§% , d(A C) =14 -8— , and d(B, c) = 5 . We made similag

measurements using a‘ruler marked in centimeter units.< .

.
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.' e 2-1 ) . . . - o " .é ‘ ‘ L . ) -
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S o DRI - . .
| ') . - We sumarigeafm\p measurementaign the following table. ‘ ’ \
E ry . o . " q ) % - - ' o [ B : ' . ‘ ‘. .
: e : ' Dista‘il@;e. ( * “Measure + '’ Measure in | R
f» - . ' -in inches = centimeters ‘
« . L, ! ) . v . ,..I‘. * __? . o . )
.- - daB) 0 s 29 : 7.3 - g
. - . . & N ‘l - , . i ,b . » v -
. X £ . . ¢ * ‘ . . -
T Aoy " ug- . 1.7, - L
a -. ‘ .. N ¢ ‘ ‘ . ‘v.‘-A‘ N
- < . c : * e e LA - .
o1 aBe) L. 52 ) 14.3 AR
R , B f . , ‘ ‘ :
. a L3 )
How de tfese reeults ,compa.re '-d.th yours? ot ' *
.o ' '
N We con;pa.red the measures to 'each other, first in incpes a.:& then in
centimete“rs. . . ' Mo ' . J.
o 2% . ( .
. a(A,B)" ® d 7-3 -
d%A,C} - S o E} TS 62”
a * . 8 - B
. o % \\,
t d(,A,B; . a(A,B )"5.3 x .51
® g)q . ) ,
- hg _
d(a,c) " 8 a(A,¢ n.? ~
E&:E;' "Ts" 82 B,C 62 .
. > a

‘The accuracy of our results cannot- exceed that of our measu:’ements. Within
S1:1u=.~sesl:Lm:I.t;at;ions we found that the ratios of corresponding measures cf'
distanceé were independent ‘of the units.

* -

Then we compared the measurementa in centimeters to those in inches for

@ he same pairs of points and for the perimeter of  AMBC :- ’
. .. ) . . _

a( AzB) :

a(ac) : 2L = 2,53 ,

. . .
.
. ' N -
. % * ,) a
. .
. ’ .
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within the limits cf accuracy which we cmﬂd _expect, we found that ‘the _
cOrreeponding measurementp in centimeters a.nd in; inches were proportional. _ ~

L - % . ] - . .
g -t 0 /- ‘e .-
M 2. A’strégﬁt 'mad 1éo- miles,long conneéts tqwn A to town 4
. . -— - . - Al ‘ . - ' \
7« B, Adriver leaves town' A for B at the sque instant as another driver = %
leaves town B for A, The drivers travel at the uniform rates of speed, - = :
Ly ft. per sec. and 88 ft per sec. respectively. ‘How soon will they meet?” ¢ .
. ' . ¢ ’ ". E ‘ ) . . .
* * Discussion.: In sblving this problem we must make some decisions about
, —
- units. Some.informetion is given in terms of miles and somes in terms of feet.

Also we are not told in what units to express he answer Suppose we try twva

.V" _different appmachee ‘We sh&ll first adopt feet and seconda as the units for ' “..
« disthnce and time. : . . *

oL . . (

\ . : . . ;
(1) We must express 180 miles in feet. The constant of proportion- . ‘ 3
ality is 5,280 Pt. per mile, -/, 1 | L

Thus ' ‘
280 ,ft.y ) )
180 (mi.) x 252 () = 950,400 (£t.) .

The incluaioﬁ of the neme of the junit next to the number -of units is

-a camnon pract.ice in the physfcal sclences and engineering. It
provides an 1nnnediete reminder of the significance of the ealcu- .
lations. Buch & practice is called & mempnic (from the breek !

-

¢ uvacBas ‘meaning to remember)
- We let t represent the number of seconds which will elspse -

before the two-‘dri':rers meet., ‘We interpret the problem with the

followlng statement of equality:
it + 88t = 950,1&00 .
which is equivalent to ' ot
. i “ “
- 132t = 950,400
™N
and Y t = 1,200 .

The drivers will meet in 7,200 seconds. - . .

Q , - . :
. ‘ O an
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o < . . o y , . .
This result is such a 1arge number that 1t may not appeal readily 0, our N
'intuitive sense of &unﬂﬁﬁn of time. We might convert this meséune to .- X
.different units .in the hope that the answer will be more intuitively'meaning-'
ful. If we convert to minutes by dividing hy 60 , we obtain” 120. "minuteﬁ .
which 1s clesrer. If we convert to s by d}.viding by 60 again, we |
ohtein 2 ‘hourgh‘dﬁcﬁ_;s probably the modst aatis;ectory expressidpn of the °

answer. o . . . . L
' - "

If we are shle to dntécipate the relative size of the answer we may be _‘
able to choose units uhich will ohviate the need to make changes at the end. e
In this problem ve might well heve realized that hours weré an‘;ppropriate L
unit for.time. . We mighb also Have simplified the arithmetic had we used

’ miies ;s'the‘unft of distance. Our solutiodiwnuld then have been: -
(2) We convert the rates of speed to miles per hour. The constants of
propartﬂcna%£%y are _§85 mile per fodt, 60 seconds per minute,.

and 60 minutes per hour, ‘Thus we obtain

\ ] »
- (sec X 5535 <E£‘) X ég (ggﬁ:) X gg (E%%:) = 30 .(%%:) ‘

and : ! . .(
gk @2 a2 @i @, (

1 min. 1

We let t represent the number of hours which will. glapse
before the two drivers meet. We interpret the'problem with the
stapement of equelity, |

LI ‘ 1

30t + 60t = 180 .
This is.equivalent to "
o 90t = 180
or (/. ’ ‘ -
& ' Do . ) .
. t= 2. '

The drivers will meet in. 2 hours.

-
(2

The first exa:?le illustrates the assartioﬁs which led to the formulation
of the Ifinear Coordi

change the eoordinate system, we do not lose the notion of congruence for -

nate Systemt Principle. It also suggests that when we

segments, which 1s defined in the SMSG Geo metgx on the basis of equal lengths.
In the next sectien we shall seé that the concept of order or betweenness is

also preserved in linear~coordinate systems,

1k
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The second exanﬁ:l“e points. up the necessity for usihg uniﬁs consistently
throughout the solutiqn of a rroblem, It also illustrates the e.dv&ntages T

¢

inherent in the freedom t.o choose t.he scale or units-of 8 coordin&te system.
| R o - v

-

- . ) .. ) ‘ . C
< , A -Exercises 2-1 ' - :

& - . ' . -

_— 1. Te.ke 8 sheet of ordinary 1insd paper and use a latera.l edge to make a '_ . :‘
K _ “rular" by assigning coordinates to the ends of* the 1ines. .Use this )
e ruler to “measure Figure 2-1, lelow;tng the outline of the discus*sion., )
. .in m:ample 1, _compare, your measurements to ea.ch other and to the meaaure- _
ments in Example 1, Find the consta.nts of proportionality which relsate -
‘the units of your ruler to inches and centimeters. , ‘ (

.

‘ 2. In Exanmple 1 1t was asserted that our results agreed within the
; ~ limitations of acturacy which might be expected. Show.that the a.ccuracy
of our results is consistent witl the accuracy. of ous measurements.

We obtained 2.53 rather than 2,54 as- the constsnt of '
proportionality rg]hiting one measurement in cgntimeters to the corrde
sponding megsurement in inches. Justify that this discrepancy is not

‘_signific.a.nt. _ | o ) ’

’,3. Assume that the earth is a sphere of radius 3§63 mles, A man of
extraordiné.’ry povwers is able to walk completely around the earth at the
equator, During this trip his head i‘s' alwvays 6 feet férther from the
center of the earth than his feet are, Thus the path of the man's head

1s longer than the path of his feet. Determine how mach longer. _
Let = = 3,146 . Try to aqticipate the appropriate units for the _ .

answer, T A

What  is the scale of the map on which the "distance" from New York to

‘San Francisco is shown by a line 7 % inches long? LT '
'(See Exercises 3 and 4,) A model of the earth, or globé, has a 24

inch diameter. What is the scale of this model? How long on the

surface of this model would be the "line" from New York to San Francisco?

A bicyclist' starts along the road at the rate of 8 miles per hour.
‘Two hours later his friend starts after him on a scooter at the rgte of

32 kilometers per hour.

(a) gpw far apart are the friends one hour later? .
(b) How long and how far have they traveled when they meet?

o ' ' 15 '22
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: T .TVn bicyclists start.gt the camc‘tiﬁe from points 30 miles apart and

S ride directly toward tach other until they meet. The first rides at A

T miies pei‘hou:, the second aé 5 &dléc per naur. At the inst&nt they A :;f
start & preposterous bee starts from t}lesfix‘,st bicjcle toward the secand,’ -
frying at an unvarying ?ate of 10 miles per hour. As soon as he meets

" the second bicycle, ' the bee turns back dnd flies t0 the fiﬁh&, then back
tq.%he Bécond .. .. He continues to_do so *antil the two riders meet. o

(a) How' long in tﬁEc and distance vas the first leg of the bec s flight?
(b) What was the total length of the beets flight .m time 4nd distance?

. . . '
4 < [ . < - . . . .
- R ]

. 2-2. Analytic chresentations of Points and Suhsetg of a Line.

*

In this section we confine our attenflon WO @ line on which a coordinate
~« system has been chosen, We shall let kf‘ stand for the ccordinate of the‘
point A , "o" for that of B- and’ 50 forth. . L

We shall show that the description of betweenness of points 1s preserved ™
in any linear coordinate system. We shall also show that cenditions on points
and subsets of a line may be,represented by means of relations involving o

coordinates. N

In the SMSG Geometry we defined the concept of order for three distinct®
collinear points. The point B ‘s between the points’ A and C if and
only 1f dfA,B) + d(B,C) = 4(A,C) . We proved that ¥hen B 1is between A
and] ¢ , ither a<b<c or s >b >c ; that is, "thd coordinate of B
etween the coordinates of % and C ., We also reallzed that the

owverse of this theorem is true‘ Laﬁtly, we used coordinates to deduce that

of three distinct collinear poinis one &and only one is between the other two.

If we changé to a coordinate system with a different unit,’thc measures
of distance will change, but the Linear Cobrdinate System Principle assures
us that the corresponding new distances will -be proportional to the old. If 4
8, b, and c are the original coordinates of three distinct collinear points

. *

and a', b?, and c' are new coordinates, then

C et -] [bt- o] _ lat - et

la-vf  Jo-cf. |a-c¢
&
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"L If we let the positive real mmber k represent the equa.'i ratios above, we
mey write . : ( : ro® ] - 2
. . . . ‘ o b ’
(1) L et o b'l < la- bl or- et mf'ci ;& o -t = kla - 2],

In the origin&l coordinate syst.em we denote the mea.sqrea of dﬁls

points by, d(A,B) , a(n c) , and 'a(A,C) ; 1in the new cdﬁordimfe system ve
dencte the measures by “ar(a, B) , & (B C), and d'(A c) ¥

(2) - d(A,)=[a-b[,,d(BC) [b-cl,d(AC) ls-c“\

and .

23) d*('A,s)‘:( |-a“- bt| ,'d‘;(B,C)'= ot = et d'iA,c) : lat - '] .

Now if B 1s between A eand C , then by definition, - 5
a(A,B) + d(B,C) = a(A,C) . I
. If 'we substitute the equal quantities'from (2), we obtain-

. la - b| + |b-c§=[a-c[,,_

L.

|

1 . ‘ .
' which since k ;4 o, is equivalent to . S PR
|

k!a-h!+k[b-c| kla - c| . :
If e substitute the equ&],. quantities from (l) and (3), we obtain first .

lat - bt| + |b* - ot = |a? - o?] -

e ! -

and then ‘ ~- ) . . “
* «  a*(A,B) + a*(B,C) = 4*(A,C) . , * f.

"I‘hus, the condition describing the order of points on a line is independent
of the choice &% coordinate system for the line,

[

Once we have estallished a criterion for describhg the order of points
on a line, we are able to define such basic geometrig entities as segments and
Lu. rays. Wg.,reca.ll that. the segment PQ is the set which contains P, Q, and .

&ll?points between P and Q, while the ray I_’a 15 the union of PQ and

the set of all points R such that Q 4is between P and: R . '
We described the roints between P .and Q as interior points of the
egn?é g . Since an interior point of a segment divides “the segment into

|
|
E two'tother segments, we sometimes call it an internal point of division. We
]
|

. identify a point of division of a segment by stating the ratio of the lengths
| of the new ‘segments. . ‘ RET

*
)




£ diﬂsién X "' sa1q 0", m.ge the
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M_ PQ. &n- ratio ff and only i/ .

t . .f" (‘( d P x S * .‘3\ . o;‘_ r
N S .déx‘,“}"d‘?f : T
. . . . . 'é,’* ’ N . .

s If ve let P, Q, and_ x represent the -coordinatés of ° P Q, and X 1in

- o

€ o?rd‘lna.;e system for tﬁe laneé we MRy \mite S

-

. - . ) x. ‘4’

, f\*ﬁ’__l . .
L]

H RN E
- .

Since X is between P ang” Q‘, we ¥now thet eifher - p < A< q.or

P>x> q‘. Thus we may femnve the absqute value signg-to writé either
-~ - o . 7o

¢ .
- -~ ¢ -
: qQ-x &

“which implies 3 . .t

e O -

)dx-dp ="cq-—_ ¢x or dp—,éx,:cx-cq o

‘ -
. . . [ . -
These are both equivalent to ~ .

cx + dx .dp +7cq ,

d{-kc

_c-T-d’
Yy

4

.éd N Y &
- x-c+dp¥‘ic+dq.

’

) A -
Since ¢ and 4 are either both ‘pogitive or Both negative, x 1s always -

et

« defined in terms of p, q, c, and d . .

%l . :
Equation (4) suggests the description of the coordinate of thé point o™

division as & "weightefl average" of the coordinates of the endpoints of the
seément. The phrase "weighted average" 1é spggested by the placement of a

- fulerum. When two different weights at the ends (;f a lever are in balance,
the fulcrum is closer to the heavier weight than .tp the lighter weight, In
determining a point of division the heayier "weight" is assigned to the
,coordinate of the closer point and the lighter "weight" to the cacpdinate of

h
- /

ey

the more remote pﬁint

..

Ml_e l. Express the‘coordina.te of .the midpoint of segment PQ ~in
terms of p and g , the coordinates of the endpoints.

-y




Solutidf. By definition the midpoigxt X of a Begment is an interior
point equidistant from the endpoiny.s. Thhs 1t {5 a pcint of #ivision whlch

diyides the segment in ,the ratio one to one, ~In t{us case ‘¢ a.nd\ d mney .
both be oné and we_may write . . = o ) '
¢ . | . .
-~ X = M - 2 ( .J
. 2 % -
N . N - . -
h Y & - - -
or ™ . - “ .
' : 1 1 .
A Y Cem - — -
N : ‘X=zPtza.

U In Equaﬁn (3) above the coefficienfs of p and 'q .,addwp to one.”

- d o ) ' . o
If.we let c+d?a angd mfb, we may write \
:‘ i o : . .

Xx=8p+bg, vhere a>0, b >0, and a+b 1. ,

It is interesting to see what happens here if we omit the réquirement
that both a and b be positive. Our equation is now . . ¢

K

(6) « x=ap+bq,where .a'+ b= ‘.‘ .

/ .
If b is zero, a .1s bne and Equation (6) gives the coordinate of P. If
a is zero, b is one and Equation (6) gives the coordinate of. Q.

R P S Q . T u. v
4 - + ~+ + +
r o N s q t u v
’ \
——
Figure 2-2

-

. . ? * '
. InFigure 2-2 we have indicated several roints on line ‘P_Q.

s 88 well as their
- coordihatés. For convenienee let us assume that

r<p<s<g<t<uc<vy,

. We have already seen that if S 1is the midpoint of M, s-= % p+Eaq;
. . ' <

that is, in Equation (6) & =1 =\'l . Also,

5 p and q are determined by the

conditions a =1 , b=0 and a =0 s+ b =1 respectively. Let'us suppose
that d(i’,Q) = d(R,P) = 4(Q,T) = d&(T,V) and that U is the midpoint of TW .
We may determine the coordinates r, t, u, and v

i

in terms ot p agd q .

‘\< . : [] I )




*  We shall want to develpp this ideas in Chapter ).

2p - g - -

/ | ' | ~ ‘

.The assumptien for order of the coordinates permits us to remove the ahsolute

*

value signe and urite:

o *re.l.vﬁ.;_‘i=i y-9_2 '
. S -r-3'top 2 , and v-p =3 - .
. : . )
whichimply , ~
-k . T r=2p-q,t=-p+2q, and v=-2p+3q respectively.
. — t . &
Since U 1is the midpoint of TV , e (\“j/
- . . ' \‘ - ‘ A ) ‘ . \ .
. . -1 1
) 1 - u = Et + i A T / —
‘ 1 1 : :
’ i ‘ . sv E(-p + Eq) +-§( -2p + Sq)
. s €
= = i + - .
- RE X -

-

. Had we chosen to, arient the coordingfe system in the/gpposite dirrﬁﬁion, we

%ould have obtained the same results.

In every case above ‘the sum of the coefficients of p\ and q 1s one..

. This suggests that any point ‘on the line may he represented by adopting

appropriate coefficients 1n'Equation (6). This is true, although we do nat
prove {tgqere. When & variable is expressed by a form similar to the right

side of Mquation (67, we say that it is expressed as a linear combination

~of P and q . We shall have occae;on;to develop this idea in the next

chapter. . We may describe our confecture here by saying that the caordinate
of ar§ point on & line may be expressed as & linear combination of the
'eeordinates of two given dietinct points on the line.

»

In view of the restriction on Equation (6), we really need only one
variable to represent the coefficients. 'If we let t.=a, then b =1 «t
and we may write ' e . ‘

<
.

(7) tg + (1 - t)q vhere t is any real numberx.

]

Thus the variable ¥ is related to thé.constants p and q by a second
variale t . It is clear what X represents, it is the, codrdinate-§F a

point on the line. We know that t represents 8 real number and we tan see

‘?that ‘each value of t determines a unigque value of* x , but it 1s not

immediately clear what t names or measures. Our primary Iinteregi.is 1n théi
variable x ; our interest in t 1is definitely subordinate.\.When we express

one or more variables in terms of yet another vsriable, we frequently say that

we have a parametric representation. The other variable.is called a. E&rameter.

27
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In.the present cgse ve .see that when t '= 0, x=gq ;vhen t =1 °

X = p ; and when § = i X = %p + ;q ‘This suggests ‘the explan&tion of the

role of t . The Lineaf Coordinaje System Principle assures us that there
exists another coordirate system on the line PQ in which the cnnrdinate of
* Q 1is zero and the coordinate of P is one. A point ‘whose coordinaté is

represented by .t 1in the latter coordinate system is represented by x in

the former coordinate system. Theé coordinates in the two coordinqte systems
" are related by Equation (7), '

, . :

We have developed several different ways of describing a point on & line

;; by méans of equations involving coordinates. We call such descriptions ‘
L analytice Eépresentations. 'We now turn to analytic representations of subsets
E " of the line, ) - Rz 4 . .
B « ‘ / k ‘/" “"
;r, _ In earlier courses you htive studied a number of subsets of a line.
Among tHem are the folloving: ‘
<~ ' ) Coe
AB , the line through A and B ; . ‘ \

AB the,ray whose- endpoint is -A and which contains B;
; AN , the segment with endpoints A and B.

It is possible to represent these and many other subsets of a line
analytically., We corisider agﬁmmer of examples below, and ask you to study
" others in the exercises. In what follows,’when we sey that b 1s between ‘ -~
a and ¢ (a, b, and ¢ real numbers), we mean that either g<b<c

or t<b<a. Then ‘B is between A and C 1f and only if b 1is
between a and"c . E -

~

. consists cf all points-x with any real. coordinate X ..
can’ ‘say this‘ﬁhw%he form

S v

t

={X: x is real} . ’

~

or in the forh '
-
— -
AB :_ﬁ(x: X‘2 2. Q}. .
- q .
. L] 3
. F
={X: a Sx<b or b<x < a} e Y

‘=-{X: b>a and Xx2>a, or b <a and x < &}
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. There are two related problems vhich crop up™requently in analytic
geometry, one of which is 1llustrated above., A set S @f points ﬁay be
specified by geometric conditions, and we may ask for an analytic condition
satisfied by the coordinates of points of S but not by those of any other ' ‘
' .points" On the other hand, wimy be given gn analytic condition and want to
know what points have coordinates satisfying it. You have met both these
pfoblems before. The analytic condition was usually an equation, but you
have also considered inequalities, and some of the oconditionms considered below
7involve other relations. When a set of points consists of those points
-Uhose coordinates satisfy a certain conditiga, we call the set the graph
(or locus) of the condition; we call the condition a condition. for (or of) the

. Bet. These ideas prove more interesting and more important in a plane and in
space, but we shall discuss some examples on a line and ask you to work on .

others.

EEEEE&E l. The graph of lxi =% , which is also the graph of x2 =25,

is the set of points with coordinates ts5 . . ' A

1‘1¢1 i 1 1‘1 11 SR S W B
. -7 -6 -8 -4 -3 -2 = o0 1 .2 3 485 6 7

\

This illustrates the fact that there may be different conditions for the same
set of points. (Of course this raises the question of whether the condltions
are really different, but’at least they were expressed aifferently.)

Example 2. To find the greph of [3x - 6] <9, we observe that
|3x - 6] <9 -is equivalent to 3lx - 2‘ <9, o0r {x- 2| £ 3. The graph’

-

is shown below.

P S U T S T G S SU U G D G S S
-7 -6 -8 -4 -3 -2 -1 o0 {t 2 3 4 8 '

The use of the absolute value in measuring disﬁénce 5 an ald in finding the
graph, Thus, the graph of. the solution set of |x - 2| <3 may be irter-
preted as "the set of all saints of the line whose distance from the point °
with coordinate 2 18 less than or equal to 3 ."° : '

" 9 9 | »

It




. I 1 i |

-4 -3 -2 < 0 ‘ 8 6 7

-(The heavy dot is a device for indicating that the right endpoint is in the
set.) An a.nal,y'tic condition for this set is

S <x<b,

&
-

ME. Let the ccordinét.es of pointse 0 , A ,':IX . be 0O,a,x,
. Tespectively. Find all poipts X suc\that 23(0,X) + 3d(x A) = d(0,A) .
Solution, $For emr X, “c,x) v 3{X,A) > d{C,A) . Then, uniess
d(0,X) 2 4(X,A) = 0 , we have .

?

. . ed(o X) + 3d(X,A) > d(O A) . -

Thus there is no salution unless 0 = X = A .

.

) Eécercises 2-2 . . - ¢
1. Repreatzln:;' graphically:
b (a) f e . (k) |x - L.123] < .456
(o) (x - N <u i (1) J2s + 2| <& .
) real -2 ) xee2lerx
(d) x+3<7 | ‘ \ (¢) sin xr = O‘
(e) 5<2-x (¢) 2 sin xr =1
(£} |t +3f <3 (p) cos 6 >0 ’
(g) =(x - 1) >0 ‘ (3) ;x -8/ <5 , where a = 2.35
(h) (x - 1)(x+2)<o0 and 5 = O.bb
: (1) x2 + b < - 4% _ (r) |x-al < ¢ , where a = 0.4k
and & = 2.3

: () ey -k =




3.

(For Parts (i) and (}) assume the
' game .pattern throughout the linpe.)

(1)

(3)

Pointss 0 , U, A, and X have coordinates 0,1, a, and x

respe¢tively. Find all values of x that satisfy each of the folTdwing
conditiéns: s - o

(b) a(0,X) + a(u,X) = a(0,u) . ,

i P and 'Q Have the coordinates given, and if M , A , and'@R are
the midpoint and the two trisection points of respectively ¥find,
in each case, the coordinates m , 8, and b

() »=
(b)

(c) r+s,q=Tr -8

-

(r+t)-2,qg=(r+1t)+d

=2r , q = 3t
2r + 38 , ¢ = 3r -~ 28
2 2

r -r,q=8 ~38

r,q=ﬂn‘




2.. In the equation of the line ﬁ ‘ :
- ¢ ) . %

. ' X = ap + bq , where a+b=1,
. . 2 . .

x,Dp, and q are the coordinates of the points X ,~P, and Q

-

respectively » ¥, . .

Find the relative positions of X, P, and Q 1if

(@) a=0 (@) a'<0 |
(b) a=1 - - (e) a>1 — 0
(_c)o<a<1- () v>1. . - o

6.. ;In the equation of the line PQ «

E | . ‘x'=.‘tp.+ (ift)q,where t 1s real,

X 4y p, @and qQ are the coordinates of the points X, , and @
respectively. For what value(s) of .t 1s

9. Find the inch-coordinates of the trisection points of AC of BD H
. of CE . - . 4

' .

10. Find the inch-coordinates of p!mts F, Q, and R such that

-

d(A,B) 2~ d(B,c) _2 a(c,p) 2 -
T -5 TP o5 = R

Pl

]

() d(P,X) = 24(Q,X) (¢) a(X,P) = 24(P,Q) ¢

(v) 2a(p,X) = a(q,x) - (a) d(P Q) = d(Q,X) (
Exercises T-10 are based upon the following situation:

‘ .

" Points A,B, C,D, and E are onthe edge of an ordinary 12 inch -
ruler at positions Eomsponding to 1, 1% s l ) 45 l , and 9 . N
respectively: ' These numbers are the 1nch-coordinates' 8,b,c,d,tnd e,
of the corresponding points,

' a(A,B) d(B,C (C,D
\
7. Find the ratios (a) Ao (b) acD) and (e) ADE] -
8. Express > ‘ . )

(a) ™ 8s a linear combinetion of a and c .

(b) ¢ ag’a linear combination of b and 4.

(¢) 4 us a linear combination of ¢ and e,

”
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: numbersf(rgctgggg;er coordinates). The first is called the x-coordinate or .

‘\ = R . 4

2.3, . Coordinetes in a Plane.'
. . .. \ \‘ R
. You will recall that the pQints of a Plane can be put into one-tb-one

correspondence with the ordered ﬁgirs of reel ‘numbers in the following way.

-

lines is called the origin and denoted hy “Q On each axis we use a
coordinate system with O ‘as origin. Normally the fwo coordinate systems
should use the same units. It is possihlecto use different coordinate
systems on the two: axes, but this introduces bomplications, a few of which
will be considered in exercisess If P 18 any point in the plane,xlet a
and.d be the coordinates of the projections oﬂ P ' onto the x-axis and
y-axis respectively. Then to P we assign the ordgred peir (a,b) of real

abscissa of P , the second the I-coordinate or ordinate of P . Conxersely,
if (a,b) is an ordered pair of real numbers, there is a udique point P
with sbscissa a and ordinate b . It is the intersection\of the line
perpendicular to the x-axis at the point‘on that axis with coordinate ‘a , ..
and the line perpendicular to the y-axis at the point on that axis with

coordinate b . o\

In sketches it is customary, though not necessary, tovshow the'x-axis
horizental with its positive half to the right, the y-axis vertical with its
positive half upward.v In all sketches we place an * x by the end of the line
representing‘the positive half of the x-axis and & y by the énd of the line
representing the positive half of the y-axis. Thid is essential vhen we,do
not indicate the coordinates of any points on the axes.,

y

- -

Figure 2-3 X
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Ve customanily reserve the let.ter 0 to represent the origin, but do not

. alﬂays fnclude it on & sketch unless we refer te it.

You 'will also recall that if Py = (xc,yo) and P, = (xl,yl) , then ‘the_

-

distance betveen the two points 1s
. 1

4(Pg,P; ) =~/(x1 - %)%+ (v, - 3P

We turn now to the prodblem of expressing the coordinates &f ény-point

P= (lx,y) of the line I determined by the distinct points.'Po = (xo,yo)

end P, = (x,y;) in terms of the coordinates of .P, and P .
assume for the time beifg that  x, £ 1 and ¥, £ ¥y -

’

o e oe— vl s —— -J
LS

Figure 2-4 -
> .

«— '
In Figure 2-4 PbQ is pervendicular to the y-akis, PQ and PIR to the

x-axis. Then triangles P,QP and P.RP, are similar, and hence

*

g x-xo_if-yo - (
"1""6_"1'5’0'

(1)

P

Be sure thet you see that the same equation holds 1f the order of Bb s P

and P 1s different. -

P

It the'point P is an internal point of division which diviﬁes the

1 ,

segment POP1 in the ratio — , then each member of Equétion (1) 1s equal

d

to and we may write

c + 4

X - xU 7 c y - yO‘ c
- = + d and - "t +ad
0% ¢ . 17 ¥

€

RIC b3

K




" to one. In this case we qﬁy let c=d=1 and write

If we solve these equations for x and 'y , we obtain

a

' - ‘ dﬁb +, ox) d?b + c¥y
(2) - S and ¥ =TT 0

-

in which the eoordinates of the point of divistion are expressed as woighted
averages of the coordinates of the endpoints of the segment.

We are now 1n a8 position to follow emctly the same development as in
Section 2-2 v . . N

"

If P 1s the midpoint of PoPl , 1t dtvides the segment in the ratio one
| 2 ‘ r
txo"-ﬁ o 'yo+yl 5 ) t

; xE=T g Yy =T -y :
. _ o o 4 ‘

-

, [s] c
y, If in‘Equat.ioTAs (2) we let & = =3 aod b =3 s Ve may v’rite

xl,--a.xo+'bx1" and y =_ayo'+byl ’ where é.§0 ’ b.‘>0 ’ smd"a+(b‘=‘l .

If we omit the requirement.that a and b be positive, we obtain
© - . !
¢3) x = ax, +bx; end y = ay, + by, , where aq&b =1, .,

An analysis simila.r* to that of Equation (6) in the previous section would
suggest that each point P = (x,y) ©n POPI corresponds to a unique ohoioe“
of numbers for & and b in Equations (3) , and conversely each pair (s,b)
in Equations (3) corresponds to & unique point on 57_’ Thus the
x-coordinate of & point on 8 line may be represented by a linear combinatidn
of {the x-coordinates of two given distinct points on the line, whg;e the
y~ooordinate i1s represented by the same linear combination ‘of the

y—coordinates of the given points.

Ladtly, ime'recognize that, because of the restriction on the coefficients
in Equations (3), one varisble will suffice. If we let } =%, then
’

=1 -t and we obtain

v

X

(17- t)xy ¢ tx; and y = (1 - t)yy + ty;
or’ ’ . | ‘
%o + tx - %)

(&) where t 1s reel. ‘

*

]
»
"




8 ‘ .
This is a parsmetric representation of the point P ='(x,y)  on the line

g;;; s where P, = (xo,yc) and P, = (xl,yl - As we shall see in Chapter 5
this representation is not only useful, for certain problems it is essential.
As we observed in the previous section, the parameter t represents the
‘coordinate of P in the linea.r coordinatef system with origin P and
unit-point Pl . .
The coordinate system for a plane which we have described and useé above |
is called & reatangular or Cartesian coordinate system. The name "Cartesian"
comes'from Descartes, who is credited with being the first to introduce the

theory of algebra into the study of geometry.
e

S . . - . . Exercises 2-3 _ . S

é

If P and @ have the coordinates given, and if M, A; and B are
‘the midpoint and the two trisection points of PQ respectively, find

the coordinates of M , A , and B 1in each case:

(a) P =(0,0), Q=1(6,9)

(b) P =(2,3), Q= (8,12) ~ , . o
(c) P=(512), Q= (6,-1) | | | .
(a) P =(4,-3), q=1-9,10)- | o oL
(e) P =(-6,-3), Q= (6,3) - .

(£) P =(-3,-6), Q = (-6,-3) ‘ |

(g) P =(p,p,), Q= (q;,q,) , _' .

(n) P = (2s,5t), Q = (s,-2t)

(1) P =(kr + 28 , -3r+8),, Q= {(-r =5, -r - 28)

Let P = (x,y) be a point on line gggz , where Pj = (xo,yO) and

xl,yl . Express x as & linear combination of ‘xo and X

and y &s the same linear combination of Yo and ¥y in the

following cases: .

(3) PO = (213) 2 Pl = (611)
(b). By= (4,5) , P, = (2,1)

('3,'6) ] P

(c) ¥, = (~6,4)




2-h . ) | _ | ' ' - ' -
‘ 4 . . ' , ' i’ ’
A 4 ‘ '
3. Let P =(x,y) be a point on line §QP1 , vhere Fj = (xb,ya) and
Pl = (xl,yl) . 1In the following ceses express coordinates of P by
a parametric represehtation. Choose the parameter t s0 that

(x,¥) = Py vhen t =0 am (x,y) = P, when t =1,
. ' » .

(5). PO 3 (2;3) ’ Pl = (611) . g
e (0) Py =(-4,5), B, = (2,-7)
\ (C) PO = ('1}-6) ] Pl = ('6"2")
_ ;. _ .
4. In the development of Equation (1) in Section 2-3, we assumed that
Xq # x, and ¥, # ¥y - If Xy =% 0T Yo =¥, this equation does
not hold, but Equation, (2) in Section 2-3 does apply. ‘Consequently,
the reat of the development is valid in either of these rases.
- Justify that Ejuation. (2). applies when the conditions are relaxed.
{Hint: Show that the problem reduces to the situation discussed in
. Section 2-2.] : | ‘ N :

5. ‘Apply the condition given by Equation (1) to’decide whether the poiﬁts
A,B, and C with the coordinates given, are collinegr.? Howlcan you
_use the formila for the distance between two points to determine vhether
three points are collinear? Use this method to check your answers.

(a) & =(7,0), B.="(-3,-6) , € = (22,9)
(v) A= (5;,k);'3 = (3,-14) , € = (-5,-6)

6; For wvwhat Qalhe of h 41s the point P-= (h.-3) on th? line determined :
by A=(1,-1 and B = (h'?)? ) 5 . . . ,

Ld

2-4, Polar Coordinates. : ' . .

A rectangular coordinate system is certainly the most frequently ‘employed
coordinate system, but it 1s not always the best choice for a given problem.

1 .
The rectangular coordinate system is based upon a grid composed of twe
mutually perpendicular systems of evenly spaced paraliel lines in a plané.
An elternative is the‘polar coordinate system, which is based ‘upon, a grid

~ composed of a system of concentric circles and & system of rays Emanating

from the common center of the circles.




L N ' | ) ’ . . ' . 2-h

| The paths from one point to axvmther'on.ﬂa rectangular grid gsually entail
| motion, along two ;djacent sides of a rectapgle, but the natural paths of N\
physical objects are usually more direct. A. foOtball player does not pass
the ball to follow the deceptive path of-a receiver. Rather he looks for the
receiver in & certain srea. If he finds the receiver uncovered, he will K
try to pass the ball Just s0 far in the dirécftion of the reéeiver. To apply o

is idea in the plane we require a frame of teference. The frame of. referencé
consists of a fixed point o, called the pole, and a fixed ragar 6§
.called the polar axis. The ray has the non-negative part of a linear co:
ordinate systemlwith the origin at O . 'The position of a point P iBA
uniquely determined by r and 6 , its polar coordinates (Figure 2-5a).

. W
p
Figure 2-5a Figure 2-5b
The polar angle © is an angle generated by rotating & ray ‘OR

about O fwom @ in either-direction as far-as desired and terminating the~'
rotation in a position such that the line R contains P . If we rotate OR
in & counterclockwise direction,_le has a positive measure; if Eﬁf is ro-

tated clockwise, then [9 has a negatjave measure.

\

.

. DEFINIiTON. If OR contains P , then the polar distance
r = d(0,P) ; if P 1ies on the ray opposite to R .
then r = -d(0,P) .

P L]
Commonly used units of measure for polar angles are degrees and radians.
When the usual symbols for numerical measure of angles in degrees minutes
and seconds ate omitted, it is understood that radian meaSure is intend?f

[4
The polar coordinates of a point are written as an ordered palr (r,6) ,

where r 4is the polaer distance and 6 1is a measure of the polar angle. If

/ ‘the angle is measured in degrees, the symbolism alone indicates that the
ordered pair represents polar coordinates., If the meagsure of the angle is
given in radians, the ordered pair of real numbers iséfgafngi?guishable from
the notation used in rectangular coordinates. If the context ‘does not make
clear that these are polar coordinates, ve musg‘say so explicitliy. If no )

indic&tion is given, we shall assume that reCtangular coordinates are intended.

EC : o3 o .
38




The pole is a .specisl point. When r =0 , the pole is described. In
this case /@ may have any measures (0,0) , (0,60°) ,. (0,180°) , and (0,2
are all names for the pole. We ﬁsually write (0,8) to indicate that @

.may be any number. The pole is not the only point whose representation is
not unique. §(\ ‘

A recténgular coordinate system establishes s one-to-one'corresponﬁeﬁce
between points in a plane and ordered pairs ofteal admbers, It is important
to observe that a ﬁbla: coordinate system does not. In polér coordinateé each
ordered paly corresponds to a unique boint in*the plane, but each pcint is

”

‘represented by infinitely many ordered pairs of numbers,

For example, some other coordinates for the point P shown in

¢

Figure 2-5b are (3,420%) , (3,-300%) , and (-3,- %ﬂ) . BSee Figure 2-6. :

Pa (1.2

. (a) : ((b) (e)

Figure 2-6
¢

In subsequent figures we shall delete the arrowhead from all rays except the

. ¥
. L
' po’lar axis . )

The lack of & one-to-one correspondence between points and ordered pairs
of'numbers necessitates care-vhen we use polar coordinates, but the: advantages
are sometimes great indeed. TFor example, the figures which we have used here
may remind you of the figures which illustrated the definitions of the

“trigonometric or circular functions. As you will dfscover in subsejuent
chapters, the analytic representations of these functions and allied'rel&%ions .
are often simpler in poler ccordinates, 3

] ‘ ‘ . A

-
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Example 1. Plot the points A , B, C, and D, which hawe;?olar
. ) ° [ Y ;‘ -
coordinates (2,45°%) , (3,-120°) ,'(1,5)>,-and‘ (-2,- %)« respectively.
‘ , o .

3
i

Solution., :

o Figure 2-7 .
Since & measure of IPOM =45° , A is the point on TP such that
a(0,A) = 2. A memsure of fQOM = -120° abd B 1s the point on OQ such
that d&(0,B) = 3. A measure of fROM =% and C 1is the point on OR such

| 3 |
that d(O,C)‘= 1. 'Lastly, a measure of ZSOM = - % , but since the polar

S -
distance 15 negative, D 1is the point on the ray opposite to OS  such-that
a(o,D) = 2, | S :

le 2. Find four pairs of Polar coordinates, twd in degrees and two
in rgfiians, for.each of the points A ,'B, and C in Figure 2-8,
N L

L




'a:. - ] s - - Figure -8 .o ‘ ;v - ~

: ' ' Solution. A simple represent:atien for A 18 (3,1&0 ) " but we may also

use’ (3,-320 ), ) , and (- 3,11“ (There are éthers, of (:Ourse.)

B =-<e,-mo )y (22 8o°) (2, —f'—“) , end (- 2@; _ (1—,105 ), (12,!+65 )
}é’;{.g) , d\(‘l?le) < a '

.. - : L ot .

| 3 We ‘mentioned that any pair of pterpendicular lines in a pl%ne may be

chosen as the reference axes er a rectangula.r coordinate system. Any ’ay in

a plene mar be chosen for the polar axis in 1ntroducing a polar coordina.te '

system. When we are solving a problem using coordinates, this freedom enahles

us to choose & system which w.lll cimplify the computa.tion. Because we wish to

~ Jkeep this 1n mihd, we state the following principle: ' '
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£

-
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COORDINATE PLANE PRINCIPLE.

Iffﬁ’ ana &D are two,perpen-

dicular lines intersecting at O (O # A and .0.#C) , there

r

exists a rectangular coordin}te system n the plane of

i

and

D such that’

.~

L e
, (1) 4 AB 1is the x-axis,

- . ;
CD 1is the y-axis

L)

and -

(11) 'in the coordinate systems on the .axes, the

"1

. ©  coordinates of A &hd C are pos#tive.

In any plane containing the ray OM there exists a polar
coordinate system such that OM is the polar axis.

+

¢
&

.In some situatione we must use both rectangular and polar coordinate éystems .

in the same piane.

. Usually we let the polar axis coincide with the non-

negative haif of' the x-axis.

Coordinates in both systems are assigned to each

point in the plane, "but we shall need gguations relating the c?prdinates in
order to change back and forth. : : S '

B

In Figure 2-G, we see that

.

1 2 -
(1) X rcose’ oYy -
y=rsinég
and . . Q
3 *
(2) 22 = x® i yP
tan9=§,w’here x £0 . ‘ .

' | / 835 42‘ | ,
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In Equations (2) we note that, as we might have expected, r and 6 are not
u_n%q_uely' defineé. You should verify these equations for points in other

‘! We may use Equations (i) to transform from polar coordinates to
-rectangular coordinates and Equations (2) to find polar coordin&tes for

points whose rectangular coordinates are known. _ _ .

:Ex%le 3. Find the recta.ngular coordinates of, the’ point designated in

- . -

polar form by (8,-60 )

e

Solution. ,

' . ™~
x:Bcos(soKa(—)“ o
y = 8 sin (-60°) = 8(- —J‘)x-w" | -

Example 4. Find a polar representation for the point with rectangul&r

form, P = ( 2,'2) . ( -
Solution. r° = (-2)° + (-2)° = 8 ; therefore, r = * 2/2 . Also,
tan @ ={-§-= 1 ; hence, 8 = f_—‘"*- nx , n an integer . It is neéessm to
N - . ’
match the values of r and Q*Vhich : . vy N
correctly locate P o* For example,
(22 , %) 1s not a correct solution, . _ .
as these coordinates locate a point in ﬂ '
the first qua.dra.nt. But ; vz L , ———p
p 0 . M X
(272 , F) ana (-2/2, ) are two 7
%= (-2,-2)
of the possible correct designations &
for P . 0 ) ' Figure 2-10
o b
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: . : - - o

L M 2« Find the distance between the points. P, and P, vhose
polar coordinates are “1!91) and (re,eg) respectively.

e ' ) o ‘ . ¢

Solution. We have an expression for the d;stance between two points 1n
terms of their rectangular ccord:lna.tes,

. ' 2 3 2
1 (3) o am) A(x, - xl) +lyy - ¥)7
. * . ?
We may use this expression if we trensform the coordinates of = ﬁl and P

: 2
to rectangular form. We use Equatigns (1) to obtain -

xl=rlcosel,yl=rlsinel

‘ . ' X, =7

2 " TpC088,, ¥, =1 313\97
We square both members of Equation (3) &nd substitute these values to obtain
a{P P).2=(r cos 6, - T cosé )2 +{r,ein 6, - r, sin 6 ).2
. 1772’} 2 2 =Ty 0% &) 2 2" N 1
or _ ‘ L
2 2 2. . o2 2
P (d(Pl’Pz)) =1, cos 6, - 2r;r, cos @, cos 6, + r,” cos” 6
L2 2 ) N 2 .2
, +r, sin” 6§, —.erlrel 8in 6, sin 6, + r," sin @, .
If we apply the distributive and 6ther laws, this‘beccmes
e .2 2 2 2 2 - 2 .
(d(Pl’I:E)) =, (cos” 6, + sin 6,) + r, (cos™ 6, + sin 6,) .
. S . \ -
‘ - 21'11'2(009 ea,cos 6, + sin 92 sin 91) . -
= ‘
2 2 2 2 pa
- = l =
Now cos” 6, + sin” 6 s COB_ 92 tsein" 6, =1 ,
' / ‘
and 08 §, cos 6, + 8in 6, sin 6, = cos(62 - 91) .

. , ) :
We substitute these equivalent values to obtain

1 l)'

~

) 2 2
(3) (d(Pl,Pg)) =r" + rE? - e, c@s(92 -8

N ]




2.4
- . \- *
He might have obtained this expression directly by applyiéﬁ.thé Law of
Cosines to triangle OPlPE in Figure 2-11. : (
. -‘ | . ‘ ) S . ' o - (rl,e )w L
- L4
. W —r
’_ h -

* Figure 2-11

Thus the distance formula in polar cbordinates is an application of the
" Law of Cosines.

S

- : _ ExerciseS‘EAh

1. PFlot the folloving points and for eaeh list three’ pairs of coordinates-
(5,1357) 7, (2,907 , (-4,45°) , (3,-120°) .

2. Plot the points ‘whose polar cogrdinates are (-2,45°) , (-4,210°) ,
(’3,2),(3,-«), (4,0° , (0,5 , (-4,180°) .

3. Plot the vertices of an equilateral triangle,vthe centroid coincident
with the pole and & vertex on the polar axis, and give'polar
coordinates of the vertices. ’

‘4., Draw graphs representing the set of points ({(r,8)°: r = 4} ; the
- set of points {({r,8) : 8 = 45°) .

o 45 -

38
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Se
’ - Q
. A . 90
’ 120° 60°
- ' -
G
o .. -
150° } 30°
I
] . A0
+ = -0
T E 2 b E=6 18 F£E10
4 i
M
210° ‘ 330°
- %
. {
. olo° 300°
270°

For each of the points indlceted ‘on the preceding disgram give five pairs -
of polar céord

ates; in the first pair have r > 0, and

o° <8< 3600 , in the second pair have r > 0 , and -360° < @ < 0°
in the third pair have r % 0, énd °< o< 360° , in the’fourth
pair have 0 <8 < n, in the fifth pair have 0° < 6 < 180° .




-

6. Find theaaéctsné{um- rep;:ésentgtim of the points whésg polar cooré;nat:e&
e L | |
@ (000 . (e wm
®) (B . (0 6B
() (5,209 (&) (-230 .
(@) (4,0%) - o ) (2D ‘
- ?‘; Wr;te‘a polar representation for the points vhose :ectanguih:‘coo;dinst;L;ﬁ.‘
BT CY R C S E. () (-+5,1)
. (2-2) (£) (-1, -~B)
(&) (p,0) - (&) (5,2) . |
Ta) (o,q) : (), (1) S S

8. Use polar coordinates to find the distance between the points A and B .
Then change to rectané&lar ccordinates and verify your result.

(a)-A_=,(2,150 ) ,B= (4,210°)

() A=(5%0) . , 3=z
G. . Find the dsténce betueen each of the following pairs of points.
S (e A= (3,07 .B—(5,9o) S e |
'3§;%!i§§(b)' A=(2,31%) , B = (3,100°) . e
e T e) A= (6,100°) , B = (8,400°) -
[(a) A= (-1,45%) , B = (3,165°)
L (e) A=(3,20° , B = (5,140°)

¢

5,;§_

(1) A - (5,-60°) , 8 = (30,-330 °)

-

10. On a.polar graph éhagt sueh as in Exercise 5 construct a hexagon vith
vertices (10,0°) , (10,60°) , ete. Thern construct all its diagonals
and write the coordinates of all their intersections (other than the pole).

.

11, Let (rO,SO) represent & pqint P . Find general expressians for al1
the possible polar coordinates of P ‘ '

(a) when 6, 1s in degrees and

(b) when 6, 1s in radians. ' .

: ) 47




{ 2"5. Lines in 3 Plge. Q

’i

Nov that we have developed coordinate systems for planes, we are sble to

. discuss, analytic representations of subsets of planes. We start with the -
. . . \'

Symmetric Form. In Section 2-3 we_giegireloped Equation (1), )

| o C ox - y-v
(1) " xl-.ig:y-yo"‘
1 Yo
. ® .
“hich is the agalytic condition describing a pcint P - (x,y) on the
oblique 1line PoPl s where Py = (x,,y,) and P, = (xl,.gc1 (We note that
the requirement that the line be oblique ensures that the denaminator in each

vmember is not zem.) ' P CTn

y : \ %
Since every point on the line may be described in this way,

*

. x - vy -y - Lo S
Yo ‘ (XQY) H xo = 9 = P.P . ) . l -,'_1\:\....‘. .
L , | 1" % 1™ Yo 01 -

¢

N
)‘ ¢

“

le 1. A smetric form of an equation of the 1line containing the
ﬁ;oints (2 3) and (4,-1) is

- , XxX-2 y-3 x-"2 y-3
) - T2~ 1-3 %F Tz st -

Two- Point Form, If we reverse the order of the members of@’quation (1)
and multiply by (yl yo) , we abtain

( eIl Ly
2) A = AL

We call Equation (2) a two-point form of the equation of a line.é

[

¢ le 2. A two-point form for an equation of the line containing the -
points 5-2) and (4,5) is

L}

.
.
.y+2=g—f——]2:.(x-l) or y+2=%(x-1),

‘."4’

SRS : 18

L1

We call Equation (1) a symmetric form of the equation of a line. X
. [ . L) . -




We note that in ﬁ&uafion {2) the quotient of differeﬁees, or the “
- —~ ¥ =Y - ' B R
difference guotient, ————= 15, by definition, the slope of the segment

EREA

‘Pb?l « In your. study of gegmetry you ma& hawe used similar triangles to prove-

‘that évery segment of a givep line has the sanie sloPe. We define the sldpe
 of a line to be the slope of all the segments on thet line. We denote thg.
slope of a sagment or line by m. g ‘

The two-point form 1s not precisely equivalent to the symmetric form,
sinee it is also defined when y, =y, oOr Yg =¥y = 0. In this case the
> 0 1 0
. line POPl is parallel to the x-aXls, has a slope of zero, and is
represented by the equation Y - ¥ = 0

: K
- If X=X oy - X 0 , neither the symmetric form nor the two-
. point form as given in Equatlon (2) is defined. In this case an alternative.

&

“two-point form
- . " %o
® - TR R T |

0’1

. - e < ' |
is defined. In this case the line P.P. has no slope, is parallel to the
‘y—axis, and is represented by the equation X - Xy = 0.

If x5 =% and ¥, =Yy s the poigts PO gnd Pl are, offcourse, not
distinct and no line is determingd.

N -

Exemple 3.
(a) The line containing the points (1,2) and (4,3) 'has slope

_3-2_1 : - ' .
m=f{-T =3 anélhas as an equation in two-point form ~

£

LY

«
[}
™)
|

~
%«E—%(x -4 or y-2= %(xvh L) .

‘(b) The 1ine containing the points (2,3) and (4,3) has slope

_3-3 . ’ on i . ] '
m= E*:f§ = 0 and has an equat}on in two-point fqrm .

(oS}

P,

,‘S;Y -3 =-%~—7&xt- 2 or y - 3= ' ‘ " v .

N
\
.
. & . 4‘)
L i L




. s

-t

The linecontaining the points -('1,3)‘ and (1,5) has"no slope since

%_:'_% =;~§ is not deﬁ'.ned.'-::_-f' However, it has an equation in an alternative
‘two-point form: - P
: : ‘ 1 l“ - , oY ‘ B :
Xx-1l=g—xy-30 o x-1=0, .

2 -3

9

" Point-Slcpe Form. Since & lix;e 1s determined by two dlstinet polnts , 8
11ne in a plane v.tth a rectangular coordinate system is determined by the
coordinates of two points on the line, If a line has slope, it is a.'.Lso »
de*_termined by itsg slope and the' coordinates of one of its points.

If a line hias slope m .and contains the point (xo,yo) sy Ve may replace
_ the difference guotient in Equation (2) vy m to obtain

-
e

(4) o ¥'-yy = mlx - x5) .

We call Equation (W) a point-slope form of the equation of s l}ne. :
Y I R )

Example 4%, A point-slope form of the line which contains the point
(5,-3) and has slope = is - '

. : 3 .
¢ - ‘ ' y+3= g(x - 5) .
| B |
Inclination, Occasionally we wish to describe a line, not by its slope,

but. by an angle rel{ted to the slope. e L

-

—t ¥
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. .
' -
. e
« & .

In Figurey3.12\the angle ~a 1s the angle of inglination of line L . The
me&ureﬁof angle @ d4s the inclination of L . The angle Q has the same

“meadure as the corresponding angle meesured in e counterclockwise direction

from the positive side of the x-axis to the unique line L® which is
para.llel‘ toe L and conbains the origin, (Ef L contains the origin, engle
a corresponds to itself.)

We observe that if L 1s the x-axis or is parallel to the x-axis, 1ts
inctinsation is .Oo . We also note that the slope of L 1is the te.ngent of

sngle o . If Fj= (xo,yo) and P, = (xl,yl) , then for the line POPl

: Yy - V¥
- tan ¢ =m = —l“-_—o,.
| . xl *o
For an angle o measured in deg;rees or radians, it is a.lwaxs the case that
0 < a < 180° or 0O < a < =, respectively. *'Z‘

Examgle 5. ) |
(a) If the slope of a line is+/3 , then tan a =+3 and the inclination

.a of the Iine is 60° or _% .

(b) For the line containing the ?aints (-1,4) eand (2,7)

£

-4
tana_m:;-{"l—‘l anda hio\or'ﬁo

N ‘ .
7 Slope-Intercept Form. The x-intercepts of any graph are the abscissas of

the points of tﬂe graph vhich are on the x-axis. The Y-intercepts are the .
ordinates of the points of the graph on the y-axis,

A line has a unique y-interce%tcif and énly if ;ps slopé'is defined, ,
If the slope is defined, the lime is distinct from the y-axis and is-not—
parallel to the y-axis. The line iﬁtersecis the y-axis in a single point and
therefore has a unique y:intercept. If the slope is not defined” the line
either is the y-axis or is parallel to the y- axisf In éither case the inter-
section of the line and the y-dxis does not contain a unique point,

Since the lines '-dth unique y-intercepts are thoge for which the slope is

defined, they are_the same li;pes which ha.ve point-slope forms The point--
?‘slope form - ' - ‘ ,

(- u ¥ -y =mlx-x) -

~' 51

- hl‘_ ~




AN

-d

<3

I~

a A e e T S
C 6 o K A ] A LY

. '2'_5
e
is equivalent to“ ‘
O I | y =mx+ (y5 - mx,) .

¥
.

We observe that the(y-intercept is the y-coordinate of the point whose
. x-coordinate is zero. If we let x = 0 4n Equation (5), we find that the
y-intercept is Yo - mxo « It is customary to denote the y-inteycept by b .

With this change Equation (5) becomes \
- (6) R y=mx+‘b,‘

‘which is called the élope-intercgpt form of' the equation.

Example 6 M~

-,(a) The line with slope 3 and y-intercept -7 1s represented
‘ by the equstion y = 3x -7 . ’ ‘
(b) The line represented by the equation

1}'-2'«_x+31~
3. 7 7

>

which is equiValent to

or

“has slope —%— andky‘-irit(ercgpt - % . ' ' :
Intercept Forme A line hes a unique x-intergept if anﬁéxly 1f it does
not have zero slop;. The slope is zero if and only if the line eit.‘per, is the
x-axis or is Parallel to the x-axis. The line is not the x-axis and 1s not
parallel to the x-axis if Vand' only if 1t intersects the x-axis in a single

™

point, In this case the x-intercept is unique.
It is cus‘toma.ry to denote a unique x-intercept by a .

“If the slopé of a }'Line is defined and is not 'zero, btoth in}:ercepts é.ll'e
unique. S}nce the x-intercept is the x-coordinate of the point whose y-
goordinate is zero, we let y be zero in Equation (6) and find that the
x-intercept a = -'% . If in addition &b £ O (neithex. a8 nor b is zero),

we mey transform Equation (6)

y:mx-!-b

k5
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alu‘l”
+

k t‘ %A=l. \j
We substitute the value of the x-intercept to obtain

- * [ <9

¥ o -
+b 1. * '

ik

(1)

' This is called the intercef:t form of the equation of a line:.
_ O , : _

[ Y
Example 7. Find the intercept form of an equation for t.he line con- <
taining the points (-1,4) and (2,5) . : . -
. - \ .' ;‘
SolwlMon. : ‘ ‘ .o

L] - -

(a) The line has an equation in tworpoigt form,

y—h:%—}—%{xi—l) - .
[

y-h:%‘-(xi-l)‘ -

=i+ 13
.yl 3 3 ‘ "
® _3:

The y-intercept is e.nd when ¥y=0, x= -13§ . Hence the -

. X-intercept 1s -13 and the intercept form is

- 4

% XX
-13+13 -1 . -
v g 3 .

>

_(b) If the intercepts are a and b , thefl the 1ine ‘contains the
points (8,0) and (J,b) « Since the slope is
5 -4 1 g . Lo s

= = it must also be the cese that - -
2+1 3°? ‘ - ‘ - :

[

2-0_.1 "b..i .
2 -8 3 andg 3,? )

W ~. S
93 '




- or-a.-" | %
» . . « f’ 1 - .
' a=-13 and b =~§§ .
_ . . N ) _
- Hence, the intercept form is .
- . -§. l = . ¢, ‘ PN ) . .
.o, 13 + 13 1l « - :

t,' . - . 3 ‘ = .
General Form. Each of the preceding forms of the equation of a lipe has
certein advanteges,*not only because it is easy ta write when certain facts- o

. ebout the line are known, but also bécause eaclhy clearly displays in 1its

‘written form eertein geometric properties of the line, However, none of c oo
these forns 1s defined for all lines. )
The symmetric form A . , ) .
. X - xo ._. y - ‘YO . f . B . e
TR Xt E Wt Yy ot

is not- defined for e 1line perellel to either axis, but if we transfonm the

equation to

“

-*

(Yl yo) (¥ = xo)

- the new equation does describe any line in the plane,
this equetion, we collect &ll non-zero terms in one mbmber of

:
— o/
,

/
/

(% - x;)(y- y5) , where x, ¢ "1 or vy # ¥y

In order to simplify

the equation
term.

and identify the coefficients of x and y and the constant

- Yok - (x = %)y - %y - ¥g) + vol% - %)

-
*

<y
is equivalent to -
T oy - vpdx + (xg -

@

and write

~

0y +'(xyg - Xy

~

%1 , and

€ =Y T KoYy o

+

0

L

(8)

ax +by +c =0,

vhere a° + b° £ 0 (that'is, a £0 \vr v £0),

txﬂﬁhetion (8) is called a general form of the equation of a lime. It is aldo

A

J~called the general linear equation in x and y .

Y - . * -

-~
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o “Example 8, lfrite‘th’e equetions , : i Ty

. - o d L3 : ' .r 7

. (a) 3x+by -8=0 and .

.~ (b) ax+ by +c =0, vhere ‘abc 0, {that is, s 0, b f 0, and

. c # 0) 4in intercept and slope-intercept form.
» .
" . gelution.
(a) o A 3+ 4 -8=0 -
© is eqwi\falent to . « )
) . f3x ¥
¢ A
. Frz-!
o - -
or . ,
. ” s
. 2 X . ‘
- x . ‘
. ~ B TRy *
. .3
‘ @
o which is in the intercept form. .
" The original equgtion is also equivalént to e - R
) l}y = -3x + 8 )
and ’ - . .
' ‘ y' = - %x + 2 s )
which 1s in the slepe:-intercept form. . - ’
e , - L
a7 {b) ax + by + ¢ = O , where abc £ 0,
" 1s equivalent to . -
* 4 ax b
. . = +tg= 1 ,._wheria abe £ 0‘,*
: r : - .
and . : . t -
- ’ —x—+—L‘=l,‘where abe £ O, )
¢ E - _c_ . r -
< , ' T a b £ "
", 7  which is in the intercept form,
’ < * ¢ ‘ - . -




75. - 2-5
‘ . ' w .
‘ ax+b:r+c=o vhere sabe £0, '
R is gquivalent to .
' byz.-e.x-c,uhere s‘bc;lo
and ¥ -
‘j - - %;'- % , where 'qbc $0, ;~1 ( :

which is in the slope-intercept form. ' o

-

From Example S(b) we observe that when an equation of a line is

expressed in general form, the x- and y-intercepts ate .- and -
\
respectiVely if they exist and the slope ‘of the line is -

dEﬁnEdc
_A'

The great advantage of the general i‘orm is that it can ﬁe written for any -

o
l* o

if it

<°"mm

P

~ line, The only shortccming is that the geometric properties of the line rre

less clearly revealed by this form,

-
* ——

i
*

Exercises 2—5

[

*
. §

"1. Use Equation (4) to find an equation of a line containing (2,-3) aj

having slopé 2, Put the equation in general form, If the linq _

‘contains the points (p,?) and (5,q) find p and q . )

2, Find an equation of 'a line with slope -»g and passing through (-3,5) .
"If this line contains the points (p,7). gnd (5,q) , find o and q ,

3. #ind an equation of a line contsining the point (O,5) ‘and havidg slope )
3 . If the line contains the-peints (p,7) and (5,q) , find p and
qQ e . ' ' P . ‘ :

N
o -

4, Find an equation of a line containing the point (h;ﬁ)” and having the-
: . :
seme slope as the line 2x - 3y = 600 . Dedcribe the relative position
« Of these two 1lines.

5. Write an equation of a line having slope k and containing the point
’ (a,o) . What are the coordinates of the point where the l}ne crosses

the y-axis?® . '

Lo




- ‘6‘. -t

Te

e

10.

1l.

' Choose (-8,8) as (xo,yo) ‘and write the equation 3x + 4y - 8 =

What is the geometric interpretétion of ax + by + ¢ =0,

“(b) - when 8 =0, bc #£0 7

/:) | ‘ ' - . af"f .
- . : ' - . ‘
Write an equatipn-representing*hll lings containing the origin. Are you‘
sure every line éﬁ represented by your equatipn? Write the equation of

the one of these lines thet contains the point (-3,5) , .

The coordinates of ‘A and B are (3,5) end (-5,3) , Segments QA
and OB form & right ‘angle at the origin, Determine the slope of eadh ‘3
segment and try to arrive at a generel conclusion that you can prove.

in symmetric form,

‘ : . ‘ o’
Write an equation of the line contai%ing the points (-4,8) and (2,3) .
Exhibit the resilt in &ll seven forms sqo far discussed., What is8 the
w .
slope? what are the intercepts? _ [ 4

Write the equaticn ax +by +¢ =0 in the slope-ing%rcept form. .

(a) when b =0, ac £ 0 ?

(c) when c=0,80£07 . v
¥ind. an equation of a line satisfying the ¥ollowing conditions:

(a) ;Qonfaining tke point . (3,-2) and having y-intercept 5 .
(b) Containing the point (3,-2) and having -x-intercept. 5 .
{c) Containing the midpoint of AB vhere A = (-7,% , B = (3,4) .

and with the same slope as the line, 0A . v »

_ (a) comlaining the potnt (2,-4)- and with inclinetion 135° .

(e) Containing the point, (-1,-3) and with inclination 30° ,

'In triangle ABC , A*= (1,-2) , B = (3,2)5€ = (O,4) . Find an
equatiort of each of the following lines: i A_If*“\\\\
(ﬂ) Kg . ) . ' S~

(v) The median from A,
(¢) The line jJoining the midpoints of AC and BC .

Find an equation of a line containing the point P = (5,8) which formsf

with the coordinate axes a triangle with area 10 square units.




Review Exercises--Section 2:1 through Section 2-5-

In Exercises 1-4 find the graph of the sets described on a line with a
 linear ~coordinate system.’ ‘ ‘ o
1. [x:l<x;<2}.- |

2. {x: (x -1)x+72) =0) .
3. (x: |x] <3) . , ;
ke (xsx- ] 22) . o . - N
In Exercises 5 to 9 graph and }escribe the geométric répresentation in

one-space and 2-space. o

5. {x:x+%4=0}.
. (x: |x] +4 =0}. - ‘
7. ‘{x:2<x_.<6}.<“\ ‘ - ,‘ LN
8. [3; :2< x|}, '
9. [x: |x| <6). ' |
10, Find the.midp(oiﬁts and trisection p§1nts of

(a) ~Aﬁ:(x:-l'gxse}. . ' 7‘

(v) BC

]

x: |x+2] <3}. — [
(c) Eﬁ:{x:chSd,A(c+2)(d-3)‘=O}.

11. Find s polar represer;gtatioh for the points whose rectangulaer coordinates .
TR e

are: |
(a) (1,73) . ‘- (@) (-2,23) . ’ f

r(b) (-/2,72) . ~N () (1,0) .. ¢
’ () (3,-8) (£) (. .

12. PFind the rectangular representation for the points whose polar

coordinates are
(a) (4,4%) . (@) (6,25 .
(b) (3,—5’5) . - (e) (5,-135




18, Vertical; x-intercept 4 .

i -
. . P

/

In each exercise from 13 to 18 Write an eguation of a line which

satisfies. the given cond#tions.

13. Contains ( -2,5) ;m= - E .

14, contaiﬁé -3,2) , (8,10) .

Y |
15. “Contains .(-4,-5) , (-6,-10) .
16. Contains (4,5) ; @ =120° .

17. Horizontal;'y-intercept 6 .

[

Exercises 19 - 25 refer to the
figure at the right, which represents
e regular hexasgon with sldes of length
6.. The coordinates of the vertices

are:

A= (6,005 B = (3,3v3) ;
(-3,3V3) ; D= (-6,0) ;
= (-3,-3v3) 5 F = (3,-3V3) .

-2
il

e
|

o

. . . " -
19. Write equations of the lines determined by each of the 5ix sides in.

-

' slope-intercept form, N

20, Write equations of the lines determined by each of the six sides in
general fornh ‘ .

21, Virite equations of the lines determined by each of the six sides in
' symmetric form. . *n

. « .*

- -
22, Find the slopea of AC BD , AE , and DF .

A

"23, Find the coordinates of the two trisection points of AB , BC , CD , DE ,

¥F , and TA .

24, Find coordinastes of the points P , Q , and R , where

(two answers).

2
3
' (b) Q@ is on gE. and g(g C) = % (two answers).
, .
b
5




N
.
i

] e A - - - e
25. TFind the inclination, to the nearest degree, of AB , AC s AE , and AF .,

26. Summarize the difffrent forms of the equation gf a lfhe in a tabdle,
listing for each form its particular 8dvantages and disadvantagess

] ’ . -

- Which form, or forms, of equations for a line would you use to
answer each of the following questions in the modt efficient way? Be

prepared to explain your answer. o . . .
() Is the point (3,7) og the line? - N \ ’
() Does the 1iné intersect the x-axis? ' If so, wiere?
-(¢) Does the line.contain the origin? :_-
(d4) what is the slope of the 1ine? - ) - i

(e ) Find the ordinate of the point where the abscissa is 5

(f) Find e point on the line where the two coordindtes are equal,
() 1f e point (3,3 - k) 1is on the Line, find k . ‘

(h) * Suppbse the point P 19 on the line; find the points R and S

on the line which are 5 units from P, o
_ " Graph the relations of Exercises 27 to 32. ' - :
2. Ux,y) ¢ |x| + |y} -0 =0} . |, . ;

L}

28, Wx,y) : |x| { |y| = 0. . ‘

29 ((x,y) : x -y < l} -

30. ({x,y) : x - y < 1} e Y .
3. (xgy) :x -y <13 N Uxy) : x+y<1) . Pt | $ .
32, R, = {(x,y?ﬁgf[xi < kj s By = (x,y) : |y| <4}, =R N R .

33. Discuss Lxercise 32 1f < 1s changed to <, What geoqetric'
interpretation can you glve fo$m lLJ R

N T:‘\ * . i
34. Two thermometers in Qommon use are the Fahrenheit and Centigrade. The
freezing point for water is 32°F and 0°C ; the*boiling point for water
. g is- 212°F ang - lOOOC » Derive a formula for expressing temperature on
one scale in terms of the other. Find the temperature ?eading which »

gives the sameenumher on both scales. g

35. Graph the following relations: -

((x,y) : 2x + 3y - 6 = 0} . " . 'J .

(a) ™ = - 3y f

(®) R, = ((x,y) : Ix +y - 2=0},

|




h

N . ' . c .. "'
1y L .o (c) R3 ={(x’y) . 5X- a_‘ 15=°}}‘ ,: -
e (4) -Rh = {‘(x&y‘) . oox + 3y <61 PSR ‘
(o) R = ((x,y) § T +y.>2) ol =0

(£) Bg = ((xy) : 5x -2y <15} . |
ORI EN

.0 . . ¢
. | Chall.exé‘ Exercises

Note: Thé symbol [x] 1is used to represent the first integer < x 4 ( '
or sta.ted 1n another vw, [x] means the greatest integer not grea{'.er than

.'x. Forinstance, 1f 0<x<l, [x] =07 1f x=2,[xl=&;1f
‘L<x<o-’[x]=- ‘

' Graph the relations.

‘l.‘ (a) R, = ((x,y) : [x.] = x} | - I
(®) R, = {(x,y) : [¥] = y} ) ’
e) w:R3 = {(x,y) :'{vx} = x} N {{xy) : [yl =¥] . .

x} U {{x,y) = [¥] =y} .

Lt

(a) R, = {,fx,y) ; {x]

(e) By = (loy) ¢ [s'= 1) 7 - -,

(£). Bg = ((6¥) & [x] = [y + K1) o .
» (g) R, = (x,y) : [x) =[-¥1} . . - h i :

SR e o L o

2. Graph r =8 .

3. Graph Vet =8,

4., When we introduced a system of rectangular cooydinates into & plane, we
“used on eath axis linear coordinate gystems in the same units. Then 1f

= (x,¥,) snd P, = (x,y,) ave any two polnts in the plene,

) =\A;2 b xl)2~+ (y2 - yl)? . -

ERIC R » 61




10.

11.

(p) %ﬁind 8 formula for d(Pl,P ) in the units of the y-axis.

~ ..

Sﬁpposé'instead that on the x- and y-axes ve use linear coordinate
aystems for which the units are in the ratio r to 8 respectively,
where r.# s .. ‘

/

(a) Find a formula for - a(P 1P ) in the units of the xqaxis. Lo

.(c) Let" P, Q,R, and S be four‘poin;s in the plane, with

coordinates (pl,pe) s (ql’qe) ,‘(rl:re) s &nd (51:52)

:MWMMLWMammmmnmusﬁ;ﬁamv

"\/fpl - q1)2 + (3 qe) \//rl - s ) + (r - 32)2

'Find the graph of S = ((x,y) : '(4x + 3y - 5)2 I. Can'yoﬁ find a

simpler analytic representation for the graph?

-

What is the graph'of T = [(xgr) (ax +-by + c) =0, where,
2

analytic representation for the graph?

Find the intersection of L, = ((x,y) : 3x+2y -1 =) and
={(xy) :2&x-3y+2=0). k e
P ‘1 . . ".

Find ‘the graph of U {(x,y? : (3x + 2y - 1)(2x - 3y + 2) =0} .

¢ a

i}

((x,y) : (x +y)x-y) =0},

{(x,y)‘ : xy = 0} .

Find t}ﬁ graph of V

Find the graph of W

| 2 2,
Assume that LO = {(x,y) Poagx 4 boy teg =0, 8y" +1b, £ 0} and

2 ‘ [
L = Uxy) rax+ by +¢ =0, al + b, f e} ‘have & unigue point
y | | _
(xi,%i) in common. What can you say, sbout X and -y, 1f a5 & ,
by 5 by, e, and c, are

(a) 1integral? ’ N
(b) rational? . ;

(e} rear? -

(&) complex?

- BN

;
What can you sey about the graph of

(Z) R={{x,y) : (3x -2y +2) + k(x +y + 1) = 0, vhere k -is constant)?
(b) 8 = ((x,y),. (x +y +1) +k(3x -2y +2) =0 , wvhere k 1s constant}?
(¢) T = ((;,y) :m(3x -2y +2) +n(x+y+1) =0 , where o + n £o,

and m and n are contant}? - &

62
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8 + b2 £0 and k is-a rositive integer} ? Can you find & simpler ~ 0

-




[

8,
»

13 What can m say about the gra.ph of

(a) U g(x,y) (3x - 2y + 2) + t(x + y +1) = 0, wheye t is a
" real ve.rieble] ? Co L
(v) "V={(x,y) (x+y+l)+t(3x Qf+2) O yvhere t is &
.real varisble) ? 5 ‘ o
(e) W::{(x,}'):s(3x-2;r+2)+t(x+y+1)=0 vhere 32+ﬁ2.;€0,
. a.nd s and t are real variables} ?
1%, Assume that the linear équations aox + boy +ey =0, " shere
]

" + by #0 and &lx+'bl:¢'+cl_0,wh“a._L +b2;€0,are

~ not equivalent. ‘What can you say about the g:raph of

- {a) R={(x,y) (aox+b0y+c)+k(alx:’bly+c)=0‘»vhere
, k is constant] ? - ! y
(v) 8 = {{xy) : (a.lx+by+c ) +k(ax+by+c ) =d,vhere
x “{s constant} ? ’ ¢ - ®
’ (e) T =({xy) : (ao.x+boy+c)+t(a1x+bly+c)=0,whefe S
! t 1is real) i A .
(a) U= ((x,y) : (a:l + b,y tcl) + t(aox +by + co) = 0, where .’
. .t isre '} 2 g ( '
('e)‘ V. = {{x,¥) f an +by +c ) + n(a.lx + by + ;) =0, vhere
T w +37 £0, and’m and n are constant] ? ‘
- (f) W= {(x,¥) ¢ s(gox + by + cQ) + t(aix + by + cl,) = 0 , vhere
" se/ t2 40, and § and t  are real varlables} ?
.. ’ - . r -
15. What is thg’ graph of . « o .
: - /
(a) 8 =d(%x,y) : 0 =1} 2. .
" (0). T {gy) s 1 =1} 2 ‘ - o

, L s
¢ ' T

‘

4
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_ of direction on the 117e. Ir P = (xo,yo) ‘and Py (ﬁ’yl , the' mmbe_l-s\,

2-6

2.6. Direction on a Line. - s _ ) o _ : g -7 i

Although there are t\m sensea of direction 1mplicit in our intuitive
-notion of a line, neither one is dominant or primary. th: ve represent a N 7
line analytically, we may suggest & specific sense of d.irect’io for the line.

' When e undertake a geometrie description®f thé line in tergh of en assgfi-
ated angle, we suggest a senae of 4 z‘;e‘ction for‘the line if & side of the
angle 1is contained in the 1ine. ' ’ _ ‘ -

, \ . ) R . . . ~ } . . . : .

- In this section we shall intrdiuce’some of the enalytic ldess end terms
which may be usﬁd opce & sense of direction has been assumed for a liné We
shall also consid.er the geometric interpretation of the ideas. ' -~

When we speak of the line segment from Pg to Pl , We suggest a s&se

- }
L) .
£ =‘x1 - xo and m -_- yl - ‘yo‘ also s‘uggestr t.his sense of direct.ion.

_ The numbers £ and m are éalled direction nmers\f L. For the
ordered pa.ir of direction numbers we use the symbol (g,m) . Since this
symbol 18 also used for a poiht, care must be exercised to avoid. embfguity. "
Cleag'ly & line has’ inﬁnitel_y many pairs of_ direction’ nﬁmbgre, -since there

‘are infinitely many pairs of points P, and B which deternfhe 1t. How- '
ever, all ﬁhe pairs for a given line L are related in a very simple way.

If L hes a slope and (z m) a.nd (z' m’) are two pairs of direction
nubeps for L s then %-—--‘-‘i and’ there i3 a mnnber c f O such that'x_

F3)
f - S
/ ct’ and m' = cm, If L hes no slope, there is still sueh 8 number ¢ , ’
fixough the m-gume:xt sbove does not prove it. If two lihes are parallel , 8. ‘ g
similar argument shows that any two pairs of direction nuﬁaers for the two
are relate}i in the same WaY, ‘I'hus 1t "1s natural to make the. folloving '

definition ‘ 3

. * * ; .
.ol
The pair (¢,m) of directé numbers 1s said to B
t to the pair (¢?,m?)}—4¥-end only if ﬁhere is a °

,!o such that z'zeﬁ,m’=_cm. o
¢

¥ 3,

i

Two distinet 1ines in s plane are pera.llel'if and only if any

L. ,pair of direction numbers for one is equivalent to any peir ‘ )

for the other. * . P




‘. f ' .

< L d

»

A peir " (&,m) of diréétion numbers for & line’ L maybe sald to _
determine a direction on the line in bhe following sense. Let '
= (xo,yo) be a fixed point of L and P = (x,y) any other poi;nt of L .

"l‘hen x-‘xo c2 and €y - yo = cm , OF . _ ; . g
- [ - x=xprel,
- A~ - ~ L}
- ! .
y=Yyy*em, vhere ¢ £ 0.
‘ . . - . .
The point Po separates- L into two sets of points; the points on one side
of . PO are given by positive valwes of ¢ . PO and the points of L given
by positive values of ¢ form s ray, which we call the'gésitive g{ (en . L)
with endpoint Py~ If P = (x,y;) 1is another point of L , then P, and
. * . ‘,
the ™points P =‘/ (x,y) given by
St . 3 - . ) -
x =x.+¢cb, '
v 'y=yl+c1ﬁ, ‘where ¢ >0, -

‘ I

form snother positive ray on, L « The intersecti_én (set of conmn‘pnints:) of
the positive rays ‘with endpoints Py and P& 1is one of those two rays. A
Intuitively speaking, "all the positive rays point in the same direction on I
L. Thep (ei, cm) of -directipn numbers determines the same direction

-

on L as (£,m) 'if and only if .¢ >0, . Ce .

) 1f {(4,m) 1s a pair of dinection numbers for L , the equivaﬂ.e;nr peir

Iy I .
. (7\1'!-*) =( 4 ..)- = )
b " ," "\ + o° 1© + ot

¢ -

is of particular importance. Such a pair is sometimes ca.lled‘a normliied
pair. You should observe that 7\2 + uE‘ = (l . . ‘
_—

\ et L be a line in a pla.ne with a rectangular coordinate system and
vljet ' be the line pa.rallel to L vhich pa,35es throughﬁthe:origin. (If L
=ontains the origin, L? =1 .) Then. L and L® have the same palr of
direction numbers (£, m) " Figure 2.13a sﬁows the situation if £ > Q and
m>0, Figure 213b if‘ £ >0 and m<0 Figure213c if £ <0 and ’
m< 0", and Figure 2-13d if 2 <0 -and m>0 .

. 65 ‘ oo
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(Myu) | : | | ' :
) Figure 2-13c ~ Figure 2-13d

. The arrowheads show the positive dtrections on .L and - L* . The ang}es

. @ . and B aremcal}ed the direcﬁion a.ngle;; of the line L with the positive
direction detéxmined by the pair (&,m) of direction humbers. /a 1is the

_‘ahgle”foi-meg by the positive ray pn 1'3’ with £he origin as endpoint, and the
positive half of the x-axis. [B is the angle formed by the positive ray on
L* with the origin as endpoint, and the positive half of th; y-gxis. We

note that the direction angles are‘geamééric"&ngles, with the -singlé exception

-

that their ‘sides may be collinear. Hence, 0 < a< 180° and © <B< 180° .
r r

-

If ¢ >0, each equivalent pair (cf,cm)wof direction nymbers for L

» . L
the normalized pair, as coordinates has been indicated in cach dase of
* 5} )
Figure 2&3. Consideration of these cases reveals that, since AT +p - 1,
. N . :
t)

is he pair of coordinates for a point on L! . The point with (YATI




Pid

- {(£,m) : 9£+8m=}0 £ +m2;!0}. T,

. . (-1 -1)‘?
¢ -, . . 1 ) ] P . N . « il
Solution.. e s
¢ ] 2 ‘ m’ 3
. (e) cosa= A= .and cos Be | = . 'oe
¢ e 2 ;2 4
£ +m < £ + m
: .. . 17 1 . o *
Therefore,'cos @ = —— , cos 8 = — and a= B =45 .
® . J:'—-) . J_ 3 . )

K
2.6

cos & =X, and cos B =y . The ¢sines Qf direction angles of a line L are
called direction cosines for the line. © ’

¥

' Tﬁe direction numbers, ‘angles, and cosines of a ray R are defined to
be the direction :iumbers, angles, and cosines; respectively, of the line )
containing R with positive direction determined by R .

- Example 1. What are the pairs of direction numbers for the line ®¢ .
determined by the points Py = (-2,7) and P, = (6,-2) 2

~ Solution.  One pair is (-2 - 6,7 - (-2)) , or (-8,9) , but any
equivalet pair (-8¢,9c) , where .c # 0¢, will do. Since pair (£,m)

ol &

Him

must be such tﬁat’

-

= or 9£ + 8m = 0 , we may write thi} as
‘ ~

jev]

Fbcamglle 2.

P (a) What are the direction cosines and the measures of,' the d.i\rect on
‘angles for the-line L with.thg?ssgzzz;;‘éirecttén determined by . -
the pair (1,1) of direction numbers? T . :

(h) what are the direction cosines and angles “for \the same line L "

® but with.the positive -diredtion determined by the equivalent pair

(v} 1In this case, cOSQ-L, ccsf3=':}— and a:azlS'jo
2 B

a

Fxample 3. Find the direction angles and directioﬁ cosines of the line
through (1,2) with positive digection determined by the pair (= 4/3,1) of
direction numbexrs. Do the same when the positive direction is determined by

the pair (./_?3_,71) .




L I : )
N y -
- M ’

a

ol -

B " . N : x ) . " R - ,'
“8Solution. In the first case, QA = /‘—-g ‘and M= . Since by e .
* definition 05&51800‘311;1 0<£5<180 ,a.nd since cosa=?\ and

cos B="1 » e see that a = 150° ,' B = 60° » If-we considgr the other

direction on L , We have Ccos a=§., cos‘B:‘-% . Hence af.-BOO , = 7. o o
B=120° . o o L .
e A'\ ' . ‘

Exadiples 2 and 3 suggest s.careful distinction to be made. A 1iné has
" unsensed direction, or perﬁaps it would be better to say that two oppdaite
v senses of directian are ,implied for a given line, but neither one 1s .
- dominant. Snme of *Eixe pailrs of direction numbers for a lin imply each
8 n% but if we select a single pair,. ‘we select a single sense of direction
as well. Direction- s.nglen and direction cosines are defined ouly for a line |

with a specified sense of direction. Wé’ shall call such 4 line a direct.ed B
line. %e sense. of direetion ma.v#he specified by the context, such as the

"+ choice of. a single. pa.ir of direction numbers For the line. o ,“ ’ . -

. ° ,In Figure 2-1k4 we observe that ‘ . Lo h .
either [a and [ﬁ or Jat and "[ﬁ’ - R S T

.might bes direction: angles for Iine: L . .
Since a +a' = 180° and B + p' = 180°
we nnteg'that cos a,’: -cos a and
‘o cosﬁ;-—,QOsa. Thus, 1if the ' s
. normalized pair (A,u) of direction
' ﬁum’pers are. direction cogilpes i:er a
girécted l\ine,‘ (-A,-u) are the pair IR
of direction cosineg for ghe same 'lirie,
~ with opposite direction; if /o and -
. [P are direction angles for a '

directed line, their supplements are ’ ‘ ’ .

- . -

direction a.ng]:es for 1:}131 same line ‘ . N
with opposite direction. Figure 2.1}

¢ .

le L, ' Fipd diredtion nﬁmbers, cosines, and angles for the lines“'y

&

() (%) 3 36y by - 5 ¢ 0], and R ,
(b) Ux,y) :ax +by + ¢ =0}, ‘b #£0}). | - o o




b A . . . R

2-6 - ]
| Solution. . . . ‘ . en
B ¥ . ' '
é ' : (a) We observe that if a nonvertical line has a pair (&, m) of

direction nuﬂbers and an equation in general form, ax + by +c =0,
+ . then the slope of the line is given by boiﬁ and - % .
" Therefore - ’ . Ve ’

’, . . -

= - g, vhere fb £0. .

T owly

~

Since 3x - uy 5 = 0 1is in general form, the slope of the line’
is E , (4,3) 1s- a,pair of direction numbers, .and any other pair
(hc 3c) , wheré c £0, is an equivalent pait of direction
numbers. The nprmalized pair‘ (A,u) of direction nunberg, or

direction cosines cos a and cos B, is either

A i" ‘ .3 = (& _3.> or (. .l_t - _3.) o
- ’ . ) ) - 5 ! 5 5 ! 5 !
./h? + 32 “/ﬂe + 3" ) v ‘ “

dependlng on which sense of direction is adopted for the line.

We use tables of trlgonometric functions to discover that the
measures Q. and 6 of the Lorresponding direction angles are
(approximafe;y) 37° and 53° , or 143% and 127°
respectivelf." : _ j
(b) For the general form of an equation of a line ax +by+ ¢ =0,
" where b # 0, the slope is - % . Th%é, (-b,a) , (b,-a) , gnb;
. in general, (-bk,ak) , where k £ O , are pairs of.direction

.numbers. - The narmali§éa pair, or palr of q;rection cosines, is

b

/_ Fe) \Fe Fov

depending on the sense of direction. Once the direction cosines

are found, the direction angles are uni uely etermined, since by
q 3

’ definitien 0 <a < 180° and © <B< 180°
. .
x[ o
. " ) “ .
. . p »
| 59 .
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- Example pl

Consider the line L = {(x,y) : 5 %: 1, a £0}.

Let’" O be the origin; let A and B be the points of L on the x- and

" y-axes respectively.

e *

(a)
(b)

+ (o)
()

Solution.

(a) X

(b)

()

\

(a)

Write an equation of I 1in general form.

Find the length of the altitude OC on the hypotenuse of right
triangle- AOB . ' . . - '
Find t.he direction cosines of OC . - : -
How are .the coefficients in the answer to Part (a) related to
the results of Parts (c) and (p)? '

+ L= is&quivalent to bx + gy - ab = 0 , which is in

b
general form,
The area of AMOB 1is equal both to %labl. and to

2 2 2

* d4(0,C) ; hence, %[ab[ =%

.é. a” + b a® & v° - a(0,0) .
Therefore, .the length of OC = d(0,C) = ——[f'—lll—— .
‘ . ' 2 .2
8 +b
- b )
cos @ = cos fABO = ———— . (Why?)
. 2 :
a + be-
: a
cos B = cos fBA0 = ——=—— . (Why?)
: o ) < a s
a” +b° - *
: ¥
Lastly, we note that the results ¢
- of Parts (c) , and.(b) apart
from a possipfe difference in -B {o,p) !
siger; proportional to the
coefficients in the equation ) (t{ -
obtained in Part (a). The N { ‘
constant of praportionality iu B
! or -1 ’ ) a A
2 2 a 2
g8 +b a +b . Q (a,0)
¢ ’
. : by 2
. “_‘ s 63+ ¢ ()
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Exercises 2-6

. Find pairs of diﬁ;ction numbers for the line through each pair of points’
giﬁen below. Use both possible orders.

(a) (5,-1), (2,3) (e) €1,1) , (2,2)
() (0,0} , (4,1) () (-, (1)
(e} (2,-3) , (2,3) - (g) (1,0) , (o,1)
(@), (-1,4) , (+6,4) (n) (2,-2) , (-2,2)

Find the normalized pairs of direction numbers for the lines in
Exercise 1. ' | o

Find the direction angles of the lines in Exercises 1 and 2.

-

Given the pairs (3,-4) , (2,0), (0,-3) , (-1,2) , and (-2,1) of =
direction number, ‘ ‘

(a). find the slope of a line with each pair as a pair of direction
numbers ’

(b) find a pair equivalent to each pair, and find the corresponding
direction angles ‘

(c¢) draw the line through the origin with each pair as its direction
numbers, and indicate the positive direction on each léPe deter-
mineq by the pair (Do not draw too many on one sketch.g'

(d) 1indicate on your sketches the direction angles of each directed line.

Let P, = (xo,yo) s By = (xo,yl) , and P, = (xD,ya) be any three
* distinct points on a line parallel to‘the y-axis in a plane ;ath a,
rectangular coordinate system. Show that the palr of direcdtion numbers
determined by P, and P, and the palr of directicn'qumbers determined

0
by P. and P2 are equivalent.

N

t

0]

Let o anﬁ‘ 8 be the direction angles of 'the line~- L with positive
direction determined by the pair (£,m)’ of direction numbers, a'

and B* the direction angles og I, with positivé direction determined
by the pair (-£,-m) of direction numbers. Prove that o and a' are

supplementary, and that B and p' are supplementary.

Assume that in each part of Figure 2-13 a polar coordinate system has
also been introduced in the usual way. Let o denote the measure of a
polar angle which contains the positive ray of L! with endpoint at
the origin. '

(a) Show that in each case sinw = cos B.

(b) Show that sin w = cos B for any positive ray lying on an axis.

&% _
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8, Find pairs of direction nuibers, direction cosines, and direction angles
for the lines L , M, and N , where

(8) T ={{x,y): x-2y +7 = 0) .
(p) M= {(xy) : ¥y = - %:H 7} |
(c) N=(‘(x,y):§-%¥l}-

R o S

2-7. The Angle Between Two Lines; Paraffel and Perpendicular Lines.

We have developed various forms of an equation of a line. Here we shall
‘use equations to an§wer a question sbout the lines théy,represent: What angle
is formed by two lines? In particular, are two lines ﬁerpendieulér or parallel?

We observed that the slope of lines parallel to the x-axis is zero, and
that lines parailel to the y-axis have no slope. Because of the customary
drientation of the axes we usually refer to lines parallel to the x-&axis, as
horizontal lines ana to lines parallel to the y-axis as vertical lines.

Y

- Figure 2-15 , -
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| ‘In Figuré 2-15 we indicate fwu nonvertical lines L1 and L2 ,
intersecting at the point ‘PO = (xo,yo) . The vertical line represented by
the equation x = x0’+ 1 will intersect these lines at P, and P,
respectivély. If we rgyresént the siopes of L1 E?d L2 By ml and m2
f%specti%ely, the.caordinatesAof P1 and P2 will pg' (xo +1, yO + ﬁl)
and (xo + i, Yo * m2) respectively. If in triangle POPlPE wve app;y the

distance formula and the Law of'CosLnes in terms of ZP [e we obtain

¥ 0 2

(Q(pl,p))2 (@( P )) (a2 2 0)? - 2alz,,P, Ya(B,,,) cos 6,

.or

{mg ml)e 1+ “ﬁ + 1+ m2 - ?4/& + ml 4/3 + m2 cos @ .

This is equivalent to

-2m, 4& + ml 4& + m, 2 cos 6 ,. ;

\ ‘ | 1+ anz

(1) cos 6 =
' qé +m qé + m,

kxemple 1.  Find the meas of the angles of intersection between the

lincs represented by the equations y = %x +1 and y - 2x 4+ 1 .

Solution. Gince the equations are in slope-intercept form, we perceive

immediately that the slopes of the lines are L and 2 . We substitute these

3
? values in Equation (1) to obtain v
1+ (3)(?) 2 2 ’
cos @ = I __3 - = 3 L
1+ (%)?- 1.+ 2° J;?.J§ 3 /2 /2 .

Thus @ = 450 , and the other three angles of intersection will have measures
of 45°,135°, ana 135° .4

f . 7 3 '
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In your previous courses you discovered that tun‘nenverticﬁl lines .are
parallel or the same if and only if they have the same slope, Clearly-all
verfical lines are parallelf You also discovered that two ponvertical liﬁes
" are perpendicular if and only if the product of their slopes is -1 . Tt

<

should be clear that a vertical line is perpendicular to a second line if ’
and only if the second line is horizontal.

In Equation (1) we note that the lines are perpendicular if and only 1if

(2) . cos'6 = 0, or m R, = -1 .

Example 2. Find dn equation for the line L which contains the point
P = (4,3) and yhich is perpendicidar to the line represented by the equation
ox + 3y + [ =

N

Iaﬁthe previous section we observed that the slope of a line
| ,

represented by an'quation with general form ax + by + ¢ = O , (b £0),
- a \

2
is - N Thus - the e above has slope = % . If L is perpendicular to
the given line, its é?&pe ust be such that .

k ‘ . ¢

-ém‘: -l ,or m=

gl V%

Sipce L contains P = (4,3) , it has the equation in point-slope form,

2 -~

(xih).‘

V][O

(y - 3) =

~

This is equivalent to

%X-.‘I-,’%f—fo,

or

[
o
»

3X -‘Ey-f;-

-

L
dolution 2. We might have developed a more general equation for a line

I which contains PO = (xo,yo) , and which 1s perpendicular to o line with
. H

equation ax + by + ¢ - 0, (ab { 05 . We observe that the slope m of [,
must be Such that

a ;f
. ' - =N - - } or m = -
b ’ a

‘

£

Thus L must have the equation in point-slope form,

‘b'
A I e 1N

LY




2.‘7‘.

‘This 1s equivelent to _
_ | . ,
(3) bx - sy - (bxy - ayy) = 0.

1f gilisubstitute thwfipecific values for a , b, x; , and y, in this
_ gen€ral. equation, we obtain | ‘

. .
y 3x - a-(3h-2-ﬂ-o,or3x ey - 6 =

-

If welgeneralize the notion of angle so that we may speak meani
%t the measure of the "angle" between two parallel lines, we may obtain both
. these results és corollaries to the more general problem of determining the
angle between two lines. Let two parallel directed lines have the same sense
of direction. Then the projection of each positive ray of one line on the
second 1line is also s rayiand coincides with aﬁpositive ray of the second line.
The coincident rays form angles whose measure is 0 or' 0 radians. When
two parallel directed lines have opposite senses ‘of direction, the projection
of each positive ray of one line on the second line 1is also a2 ray, but in this
case, it is oppcsite to a positive ray of the second line. The pairs of
opposite rays form angles whose measure is 180 or s radians. .We speak
of parallel and antiparallel directed 1ines respectively to distinguish

4

between these two cases. _

! ~ . s

Y R : ‘
‘ ihe preceding discussion suggests the follpwing conventions. The

measure gg the angle between Ezgzgéfgliel directed lines is sald to be o° .. -
or O radians. The measure of tHe~angle between two antiparallel lines 1is

sald to QS 180° or # radians.

-

Although. the Law of Cosines was not developed for angles of measure 0°
or 180 s thg relationship it de%crihes is still valid. We shall leave the
Justificatdon as pnfexercise. If this externsion is made, we may apply
Equation (1) to parallel and antiparallel directed lines. In these cases,
equivalent conditions aré\fgat cos 6§ =1 and cog 6 = -1 respectivély.

Thus, 1f the lines are parallel, cos 0 = 1 an uation (1) becomes
1
4 ‘hnle2 = 11
NA + mleﬁA:+ m$2
This is equivalent to ,
o~ :
R N AW T [CR S
s ' . |

1+ 2m1m2 +'m12m2 : 1+ m1 mE + m1 m 1. .

68
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] ‘ ‘ ‘ '
This becomes
4 2 2 .
m - Ayt my =0,
, or’ | ) _
. . ' X ) 2 .
‘ - (m - my)" =0, | B
. . . ' , / -
" which is true if and only if m = 1'112 « Thus, nonvertical lines are parallel
if and only if e ' ‘
-}

(%) ~ cos § = - 1, which 1s equivalent to m o= m, .

Thus, we may express the condition that two nonvertical lines are parallel
either in terms of the angle between them or in terms of their slopes.
Example 3. Write gn equation in general form for ‘ \ 2
(a) the Iine containing the point (1,2) and parallel to the
line I = {(x,y) 1+ 3x - 2y + 6 = 0} , and ‘
(v) the line containing (xo,yo) and parallel to the line
L={(x,y):ax+by +c=0, vhere b £ 0} .

Solutions. .
(a) The slope of both lines must be 3 | 8o the required line must
2 ? q - .

haye as an equation in point-slope form,

y-2=3x-1). | j
This is equivalent to
2y -4 =3x-3,0r 3x-2y +1=0-.

13

" (b) The slope of both lines must be - -g , 80 the required line must

have as an equation in point-slope form, '

Y- ¥g - HAx - x)
0% " %® o’

This 1 s*equiva.l ent to

by-byoz-a.x+a.xo, -
or = /
»~ ¢ I
ax-rby-(axo+byo):o.
™ ¥ !
Poy

69




wité‘ an equivalent expressionyto Equation (1) for the cosine of the angle

R /*: Since equations rebrqsenting lines are frequently given in general form, .
| .
!

en. two lines in terms Yof the coefficients in the eéquations,

£ two nohvertic:&l lines Ll ‘and L2 have respective slopes oy and
mg and be represemted by the equations ‘

. L4 e f . L
» " A aix+bly+cl=0,where 312+bl[;éo,
< ax.+b +c, =0 where‘a.2+nb2;é.0.'
. e & T % ’ o o .
. We have observed that )
! 85 !
’ = - &nd R
‘ . L ™ b T b,
If we substitute these values'in Fguation (1), we obtain
' #
8182
. L ) 1+ blb2 R
cos @ = —
2 2
a
e [ 2 ]
. b 2 b 2
~ 1l 2

which isgequivalent to

c. 3132 +,b1b2 a132 + blb‘2 .




. ‘Llé~= {(x,y) : 22 -"7y + 25 = 0} and t £(X,y) 3x - 2y -5=0} .

..;

Since + by 0O and a, +Db © 10 , Equstion (6) is always defined.
%_ n F U, Bqua { :

Furthermore, Equation (6) is valid even when ‘f;!nr LEQ is vertical. We
* : \

shall ltave the Justification as an exercise.
When two lines intersect, two pa&rstaf #ertical_angles are formed. If

the lines are not perpendicular, two of the adgles are acute, while the other

twqf%re obtuse and supplementary.te the acute angles. The cosine of an acute

angle 6 is positive, vhile its obtuse supplement /[6' is sucﬁ that

cos B = - cos 6 .. Thus, if we vish to obtain only the acute or right angle

between lines Ll and Lg, we cansiaer ‘

, *Ya a, + b,b,.| |
(1) ' cos B - 1% * 1% o .

: 2° 2 2 2
% ‘ '/al +bl, Jae + Db

f_Example L. "Find the measure of the acute angle between

L]

\ .
Solution. S

\
/
| cos 8 = [2-3 + (-1)(-2)] =003 B 162,
W2 (o W2 2 3«13
2% + (1) W37+ (-2) o
o p
and - -2 To

‘ -

Example 5. Let '.( Bl,m.ll._ and (Be,mg) be pairs of direction numbers

for-lines Ll and L2 . respectively. Show that L1 is perpendicular to

.

L, if and only 1f £ 2, + mm, =0 . ‘
. #  Solution, if* Uggests a special <ase of Fguation (6),
. '
) Y a + . b b
/" . cos e jll 2 <




_is equivalent to cos § = 0 or the condition

which is equivalent to

' 1. Show that the relationship described by the" Law of Cosines. »

2-7

£ . .
. . © . : ¢

vhere ' g§,,b, and a,b, are the coefficients in general forms of equations

. for L, and L, respectively. We.gre considering perpendicularity, vhich

88, + bb, = 0,

We have already observed that (-b,a) are direction n s for a line
= ((x,y) : ax + by + ¢ = O , vhere a2 + b2 £ 0}°. This is ‘true in genersl,
as we shall ask you to justify in the exercises., Thus, we may write ‘

a =;k1m£Jf b klﬂl ’ aé = kEm2 , and _b2 = —kezg , where: k) and k2 are
constants su¢h that kl + k?2 #-Ov. We substitute these in the necessary and
s&ificiént condition sbove to obtain ) . .

Ky kzmz (k8 )(~kpp) = 0, .

(8) | ; | Elﬁ,e +mm, = 0.

Since the three equations are-equivglent, both the statement and its coxnverse

follow. -* )

.

ot ’ Exercises 2.7

\)

(d(A B))? = (a(a,))" + (a(B q))e - 2a(a, c) 4(B,C) cos C

is also valid in the cases illustrated by

(a)
! *— —-—— -0 - —
C B ‘ A
and . , B
§ - *
(v) ' .
- & & —- >
A B =

That is, justify the use of the Law of Cosines with angles of measure
(8] (O
o° and 1% s . .

-
3
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L . |
. 2. Shov that Equation (6) in the text is valid when -
(a) one line 16 vertical- (Let L5 = ((x,y) : ayx+c, =0, a £ 0)
2 2 : .
.end L, —-{(x,y) : ax+b2y+c =0, a," +b," £0)) \‘
(b) both lines are vertical. (Let L, = ((x,y) Pajx+e =0, apn 0} -
~ 'andL={(x,y):aé’x+c2=0,a;40}.)
' 3.- Which, if any, of the lines with the given equations are parallel? ' ‘
perpendicular? the same line?
Ly ¢ ks by - LS Bl Bt TN
. . . h | g x’- 3 ' y - l - ‘
Lpry=3x-3 Ls -3 Ar-1
L'3:8x+6y-'15=0 o '
4k, Find ah"an,glhhe_tween‘ each of the pairs of lix;es with the é’iv’en c;t}uaticns.‘
(a)2x~3y+;1=(),x-ar+3—_-9/ ) )
(b) x+27+3=0,y=2x-4 )
- 4(c)-y—3,X+y 7 | .
_(d) 3x+2y+5_(_),x-2y+5=0
() y=2x-5,b4x-2y+7=0 .
‘ (£) y=2 y X =3 ,
5. If P= (a,b)i Q = (-b,a) , and a2 + b° # 0, show that OP | 09 .
G.LetLl {(x,y),Ex-3y+1+ 0} andL = {(x,y) : 3x+y-2 0} .\
Write an equation in general form of a line L3 which is: . A o
{a) || L, and conteins the origin.
(o) ) L, and contains the point (1,5) . " .
(¢) | L and contalns the point. (3,k4) .
(a) | L, =and contains the point (2,-1) .
fe Find an equation for a line meeting the following conditions: .
(a) Parallel to L = {{(x,¥) : 2x = 5y + 7 = 0)™ and containing ”Pl = {2,7)
(b) Perpendicular to L = {(x,y) ! 3x+2-1=0}, cantaining (e,7)
(e) The. perpendicular bisector of 7B , 1f A= (—3,2{) and B = (5,-1) .
() Parallel to the %-axis snd containing P, = (5,7) . |
(e) Parallel to the y-axis and containing P, = (5,7) .

T3

S0

L]




8. Quadrilateral ABCD is a parallelogranu Find the coordinates of D
if A=(1,2), B =(57),C=(8,-3) . If the order of the vertices
of the parallelogram were not specified, "how many possibilities wnuld

= there be for D ? ' ‘ S -

/9. A line L makes an angle whose cosine. ﬁks 1% Y10 with

L, = {(x,y) ‘: 3x -y +5 = 0} . What is the slope of ﬂl ?

Find 1ts equation'if it contains the point (1;-2) .

-
A -——

(a) Write the equations of AB , BC , and CA in gene\-al form, ’
. (b)  What is the slope of*.each of these llnes’? N
(c) Find the measures of the three angles of triangle ABC . <
(a) WMte equations of the lines containing the altitudes of
~triangle ABC in generak form. T SR

3

' 11. Let ‘T(X,y) s.lx + b {r + ey 0 , where 812 + le # 0} and ) ‘

13

-2 2
0, vhere 8," + b, £a) .

Let I.:lt be perpendlcula.r to L and contain the origin and

—{(x,y) ax+b2y+c

lz
let L,' be perpendicular to L, and contain thé origin.

. . - -

(a) write equations for 1, and L, in genera.l form. .

“(p) If L, and L:”:’ form an [6 , prove that there is an[¢ , forme‘d ’

(c¢) Interpret the results of Part (b) tn words.”' . L

3 : A

12. (Show that if Qiges ]'..1 and L2 have palrs of direction cosines 1“
(M) e.nd' (A s1,)  respectively, then - . SN
- f = . .. *
(a) )\17\ + pqp? = cos O , where [9 is a.n angle formed by -LI e:.nd L

» (b) [}\ ?\Q + plp,)t = cos 6 , vhere /6 1is the least angle formed by

L, and L,) , and ¥

1

(e} \A, # p,lp,,) =0 if and only if L and L are perpendicular.

10. Let TEk {5,1) , B = (-2, 3) , and C = (-3,4) . _ | R
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2-8. Normal and Bplar Forms of an ﬁgua‘cién of a Line.

¢ .
In this sec¢tion we shall intmd}xce forms of an equatior of a line which . -
-display the geometric properties discussed‘in the lagt section. We shall also e

consider sa r_elate'd exp’ressiorf:for the distance between a point and s line.

¢ . \
Norma.l Form. -The resulté\of Example 5 in Section 2-6 .suggest another

-~
cha.racterization of & line in a plane. This characterization leads to yet
another/form of an equation of a ling; the form has several useful applica- .

tions. , . \\‘ |

ane a r‘eeta.ngular coordinate system has beeﬁ\ﬁefined in a plane, any
' directed segment OP , emanating from the origin and terminating at a.nother -
.point P in the plani‘is detegipined by the distance d(O P) and the
direction cBines, cos a= A andcos f = .. , of the ray ‘0P . In the plane.
any line 1L which does not contain the origin may be describeﬁ simply as the
set of pdynts which is pérpe'ndi%er, or normal, to the directed segnient.-(-);
at P . The directed sé’gment’ 0P i 'also said to be normal to L , and 1is
called the normal segment of L .~ The distance d (04P),. is Lcalled the normal

3 diste.nce of * L éa.nd is,. of course,f-ne distance f‘rox’x\x 0 to L ).

3 fn Figure 2-16 we let OP, "~ be/the o
normal segment of L. and let P = d(O,P ) . v ¢
N ) |

Then' Py ~(p cos a , p cos B) = (pA,pu) - &
Now ‘phm) is also a pairtof direction L\ . ) .
numbers for, the line OP If p-= (x,y)
1s Sny point of L other 1?811 PO ’. I
(x - pA, ¥y - pu) is & pair of direction

numbers for L J \\& . ) Py = {pA,nt)
A . ' .
. As we have se in Example -5 of 8 \ ‘

. . v
Section 2-7, T is normal to %PO at Py . a

if and only if pMx - pA) + oy - pu) - O . 0 - \

We note that the coordinstes of Lhe point

P, alse satisfy this equation. ‘ ¢« Figure 2-16

-
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. a” + b to obtain-the normal form; if ¢ > Q ,.we divide by - 4a” +b .

’ . X ‘. - " . Coe T ) .-
* The equation is equivalent to vt
.- ' . - ~s M
, ' 7\x+uy-p(7\ +uf) 2o

~
L4

~ Bince ?\2 + ue = 1, this may be written as,
1) o M -p=0, % : '

which is called a normal form of an equation of ‘a line, We cannot stress too

. strongly that in this form A and M are not direction cosines o&‘ the line

self, but pf the normal segment. The consta.nt P. 1is always msitive and

¥ _'the dist&nce between the origin and the ljne o
We may a.lways express an equation of a line :Ln general form}"’E‘xample ‘5

-in See'tion P-6 also suggests how we may find the norma.l ¥Yorm of an equation of

‘s 1ine L which does not contain ﬂ‘le origin. Let \‘.,

where (a +b )C ;‘ 0} .

of the genera.l form.

{((x,y) : ax +by + ¢ =,

'Ehe“ normal form of sich an equaticn is a special case
Both &re Iinear eqlatisns, and twn linear equations are
equivalent if and only if their corresponding coefficients are proportional.
Thus,. the patr ‘(a,b) is. equivalent to the ‘normalized pa.ir (}\,u)

direction numbers for the normal’ segment Corfsequently, (a,b) is & pair of
dfrection numbers for the normal segment and iy y
» w '
) . ¢ a : b -8 -b
. - ()\’“’)‘ = ~ ? : o - } N - — .
. 2’ + b° e + b Ve + b2 W 4 b2 A

Our ghoice petween these two’' possibilities is determined by thegrequirement

that, p-$ 0. If ¢ <0 In the equatidbn ax + by + ¢ = 0 ;, we divide by

’ » R " -
P

(3 \
1. Prite 3x~ 4y + 12 = 0 1in normal form.
r i - : ) o [N . Q . ) . ]

~.”  Solution. Sinee the ctmsta.nt term 1s.pagitive, we dividesby

E@‘V}BE +'(—1+)! = -5 ;to cbtain - . - ) XN

('S - - S

. ' - .
. * Sy 4 By 22

O T
L : .
. .

=% P - =
: . 55 > 75 '
- -
4 We see from the equation that the nogxal dibt&mce is — ,cqgs@s -2 ,and N

1

: . - '
. -
. . ~ ¢
-, LY ~ — -




) N ‘ 2.8
- - . m . .
. “ . : . . .
. M' Put the equation -6x - 5y - =0 1n nqrmal form.
Solution. . 6 .5 y - 20 - Q . | '
= L m e A . |
N ' N N

Ve ha\ce not considered lines conta.ining the origin. In the general form
of an equation for §ucl;1 a line L » c 15 kxero,. There is no directed segment

normal to the 1ine ema.nating f‘rom t.he orig : nor is there d. mique standa.rd s\

‘procedure in £his cage:'* Some ‘matﬁemaﬁic‘.lans hold that there are two normal
forms 'corresponding to the normal rays
O—I: and 55, as ,illustrafed in Figure
2-17; eﬁhets prefer' a unique form corre- : : ..
;ponding _tﬁ_o the normslfmf for which
0<d<180° and 0<B<9’. In'| .
the firstecase we obtain a normal form

by dividing a general form with ¢ =

‘by either Ak® + b2 Va + b

1n the secend case, we cbtain a- unique .
* normal form by dividi‘g by . e ' e
¢ ' .t
¥a% + b° when b>0, by ¥a® #b° .
when b<0 a.ndbye.whenb Q. | .. )
~ You may follow either convention. v o Figure 2-17

-

Exasple 3. , the \lno:",mal.f(orms df eq_ue.tions of the lines _
(0} o= Uey) s axv=0r. L . :
(®) L, = ({x,y) : 3x- &y = 0} . -,

(e) T, = ((x,y) : -2x - 0] . o

-

Solution. «

3. 4 . 3 b

Alt te forms: =X +—=y = 0 oOr - 3% - =y = O

(a) erna = = : 5 5Y

~ i . . o’
\ Uniqpe form: —;—x : ;y =0 . .

Lt . . 3 2 . \\ : j
(b) Alternate’férms: —x - ——y =0 .- —
e . v /1 /13 /13

Al

b} _I o Y
e
: Uniqueformf -'—ji—xfiflg
- . ,/ﬁ a3 < ;

(c) , Alternate f‘orms:_ .x—O 6r,,_-xio o o

1. . ¢ .
Cy Unique form: x =0 . _ . "o , T .

Sy ) . Lo . .. . v .

i . : - .. : {;'.‘ % . - &

. | ) S N o 4 . ,- o -

Qr,"v . T . P

-
A

A

Y
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A useful aﬁpiication felated-to the norme&l form is to find the distance
between a point P, = (xl,yl) and & line L = {(x,y) ¢ & + uy - p =0},

We illustrate this situation in Figure ' _ ’
2-18. F is the projection of Py

onto L and we wish to find d(P;,F) .
There exists a unigue line Li which o
is parajlel to L and which contains

P . F? 1s represenied ?; ﬁhe.equatién -

REE. Wy - Py = 0.; Since L, contains,

.y

(x,9,) » Mg 4y, - =0 or

Py = Mﬁ‘-’L “yl .7~ ) . N \l
K There are seﬁeral cases to consider

fricluding the following oy 4 Ao 7 Figufe 2-18 .

\ . .

\

1) O’“a.nﬁ P,

caselp!d(.PljF)=P1’P=?\XL+LL‘[1-P. -

~

i1) P, is on thkesame side of L'ps O ; P is farther than O from

) of diréction and 1ts directicn cos}nes are -\,-i4 o Hence, its

normal distance 1« %xi hyy 3 or -p,, and
a(P,B) = o+ (- Px) = |ax tuy - | .

You may fi t helpful to drav a figure to i1ltstrate\;the second situation;

. We leav®“the other possibilities as an exercise.¥In each case the
distance(4d between thétpoipt Pl = Cxl,yl) and thet 1ine .
= ((xpy) : Ax + uy - p = 0} is given by~ . <
. oF -
) . ® }a_xl + by1 + o}
(2), S e W1 -pl - — . s |
+ 2 2 -

[ . i . . a + b . - A
: . . O~ o . ©

Example 3. Find tpe. diutunce bgtween P = (3,-10) and
(X,y) 3x - by, 12 =0y . . oo IR
i\ . ¢ - . : ] t q " : N

- Solution. From Fquation {2) we obtain | .

$ f (3) - i lO) + @l 1oun "

J—'T+(]+) -  ‘) -.>..

are on oppehiﬁe $ides of - L ‘as in Fi%yre 2-18. " In this
-

L « In this case;jthé.ncrmal segment to’ L1 ‘hgs the opposite sense.

¢
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Polar Form, The analytic representation of a line in a plane with a
pola.r eoordinate system is similar to the ndérmal form.
—n
Figure 2-19 ' ‘ ‘ : .

In Figure 2-19 we illustrate aline L 1in a plane with a pola.r

.coordinat-e system. Let OD be the normal segment to” L, let"p be the

normal dists.nce, end let J/w be the polar angle of D. If P =(r,8) is
point af L other then D , then in right triangle ODF we have

(3) ~ ~ xcos(8 -w) =p, -

which is called the polar fo_rm,o-f an equation of a line which does not
contain thé pole, We note tha: = (p,w) satisfies EqudSion (3) and that,
since cos(w - §) = cos(6 - w) ,Nghe ‘equation is valid for paints whose
polar angle has measure @ which is less than @ .

" . Points are on a line I conteiming the pole 1if and only if they may all
be described by the same or equivalent polar angles. Thyg, ‘the represens
tations of u line containing the pole are

U-
1

{(r,8) : S\z k + nt , vhere k 1s real and n is an integer}_,

{{r,8) : g =) + 180n° , whete 'k -dg resloand n {s an integer] £

The appeararwe of the degree symbol Ln the second regr esentat-lon does not mean

e
n

that the right-hand member o!f the equ&tion dops not represent a qupl( real

number; rather, it is a ‘convention to indicate that the angle is mensured in

degrees.’ . : \ ,
=




Exsmple 4. | ‘

¥
(a) -Find a polar form of an equation of the line with inclination
> 135° and whose aistence from the pole is 2 .

-

1

% (b) Find a polar equation for a line a:onta.ining the pole with
incIination 60°

, . .
Solution, o \ | )

y Ir the line int.ersects the polar a.xis, the polar a.ngle of the
qnormal segment is E , and“the polar form of an equation 1s

. r cos(6 - %) = Ve, ‘ . '

If the line intersects the ray opposite to the polar axis, the
polar angle of thé normal segment is %—ﬂ- , and the polar fﬁm of

an eguation is f . :
rcos(é-%):Eu o ,
. . ’
‘(b) The line has polar equations

. 0 = % + s, , where n is an integer, - ‘

) . ‘ .\
s s or * ‘ - | I * ' .

» o, . 0 ‘F m

.6 = 60 + 180n , where n .15 an lnteger.

If a linc has already been represented in a rectangular coordinate
system as ) ‘ ‘ , . . .
L;{(x,y):a.x+by%é‘:0,a‘?+b2f0} ;
we mey obtaln a polar equa%ion, in the related polar coordinate system simply
by substitution from the relations 'x = r cos 6§ and y =r sin 8, The

equation becomes . o ‘ ‘ ~

. ‘ o
() arcos 8 +0DbrsinB8+c=0, vwhere a2+b€‘;40. Y

- In order to see how this equation is related to the usual polar form,

- we recall thgt g_x’«); by 4.¢ - 0 has the equivalent normal form .

4

AX + Uy - p - 0, with the corresponding coeffigients proportional, Further- '

$.

more, A = cos a and yu = cos 3 , where [(x and Zﬁ are the direction angles
. - [

of ‘the normal c‘egmem:. In the polar coordinate system which we have assumed

to relate the coordinates, we let 1@“ be a polar angle which contains the -

+ .
normal sdement of L . T'Qus w=-a and cos & = cos @ = A . Furthermore,

L4 ¢

T * % 8o 8/




-polar form of -an equation of the line

i}

¥ -

-

sin@w=cosPf=u. If you have worked Exercise 7 of Section 2-6, you should
already ‘e awere that this is %true; otherwlse, you should Justif‘y now that

~it is S0

Let MM +uy - p =0 be the normal form of Equation (h) We substitute
for % , L ,°x, and*‘% to obtain

\ccsm-rcose +sinwersin® -p=0,

\ ! .
\ .
\\

¥

or

r(cos @ cos @ + sin @ sinw) = p ,

* whigh 1s equivalent to . -

-

rcos(8 -w)=p.

¢
-

Example 5. Assume the usual ozl'ientation,of th?a polar axis and find the

(a) 2 units to the right of the pole‘( and perpendicular to the polar
axts, - o “ ' .
¢ (b) 3 units above the pole and parallel to the polar axis,
(¢) 1 unit to the left of the pole and perpendicular to the polar’
. *7 " axis, T )
(a) 4 units below the pole and parallel to the polar axis. -
(e) T={{x,y}:x+By-12=0}. ;
‘So.lution.
_(a)' Since the:length and polar angle of the normal seginent are 2 and

X 0 respecfively, the polar form of an equainn is rcos @ =2,

]

(b)‘ r cos(6 -~ %) 3% A's‘impler equition is r sin 6 = 3 .

-

(c) r eos(6 - ) =1 . Amother equation is r cos 6. = -1 .

1l

(@) r dos(6- 270°) = 4 . Another equation is r sin 6 = -k ., -
- (e) x93y - 12 =0 1is equivalent to the normal form .
- B S I "

L+ By i6-0

4 . . - “ -

and the corresponding polar equation ..

, r . . .

. ST 1 y -fi " i

‘ | - . grc059+——2-rsine—_§=‘p‘,
N

, :

. ‘,, . .l‘

| w88

« ! 81 . 2 ~

(""'r v ! 3 : .
'&

2.8

‘
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. . [ ]
y ' »
or _
(5) C r(% cos g+ —g— sin 8) = 6 . .
- - - : . :
If we let % = cos @ and [%—-; sin w , we obtain % as a sultable value
for w . We substitute in Equation (5) to obtain J ) )
r(cos%cose+'sin%sin 6) =6,
.‘ ’ ) ) )
. e rcos(%-@):&, .
. 1
/\ or- ¢ N . °
. . . . N L] s
[\: - ‘ : : | r cos(@ - %) =0, . .
j ’ ' , ..
. which fs irxﬁolar form. .
N ¢ Example 6, Assume the. usual “x‘elation's;hipﬂb'etween the pol&r axis and the
A1 “x. and y-axes and write an equivalent equation in rectangular coordinates for
‘ : ' ’ y
- r cos(6 - w) = p . } .
.

- .

Solution,” If we er(g cos(@ - w) , we obtain the equation.
B . - recos Qeosw trsinf@sinw=7p.

“w . . _ ba

Since x = 1 cos 6 Ismd ¥y = r sin 8 , this 1is equivalent to

- () C xchbsw tySinw=7Dp . .
. Because  cos @ = N and Sinw s i, Equation (() Jis sometimes called the
. "normal torm of an oquation of s line. o . L
—_— “ , . .
) | .
Fxepcises _2;8 0. .

) —_— ‘ -
in normal form: .

1e Write each ol 4he folkowing cquations

X ) * . ' -,
(u)ﬁ"‘- hx - a3y #1015 - 0 (¢) 1Px -5y =0 5 . '
(b) 5%+ 12y = 65=0. =+ () fy =20 - -
’ (¢) 3x -2y -6=0 (1) 9x + 1520
o T ’ '
(d) 5y - 3x_+ lo = o~ (1) T}‘(é-"%zl .
: S - oy vy T
: : . T ~ |
(r) e G (1) y-2-glx-5) ~
. .
" . )
.. - 8o,
L) . 89 - i* .
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2.  For Parts (a) and (b) of Exercise 1, drav the normal- segment by'dsiﬁg': i
~the information. concerning o 5j§ , and p which is supplied by the

k . ’ : oo
equation,. - Then draw the line perpendicular to thé normal segment at, )
, its terminal point. Verify that this is the line represented;by'the ‘ \
given-equation, | R
3 l_ ‘
3. Without usinp rectangular coordinates write in polar form the equation
of a line ' ) ’
“(a) which is parallel to the polar axis and 4. units ohgpgg ite
B - . | . 0 !
{(b) which 1s perpendicular to the polar axis and 4 units to' the
right ot the pole, ' .
... *
(c) through the pole with slope 3 .,

(d) which contains the point (-3,1350) and has inclination 45°

(e) which contains the point (3,0) and has inclination 30° .
C .

(f) which contains the point (2,%) and has incliﬁation s, . X
(g) which is perpendicular to the 1line with eguation. r cos(8 - -)

and contaln& the point (k, ) L '
(h) which is parallel to tht line with cquation T cos(@ - T) o

-

and contains the point (2,-135 %,

i, Transfiormeach of the following equations to polar form. S

{(a) x -k =0 .
(b) y+h-0 : o - T

() x- 0% . — SRR

(a) by 402 -0

(¢) 3x -2y + 6 -0 )
() x+By -2=0 .
() 15y = 8x + 34 = 0.~ . ’ k

| A SN R

5- Let I, = {(X}y) T AX 4 Uy=-p = 0 ‘ where: A t4 L - }} and Iift Q‘ ) .”.,‘" o ‘
P} : (X1 ,.Yt ) . S)I‘OW that, the distance bebween Fr " and L is. "
* - .

-[%xl Uy, - pl when f o | -

V e . - . . o .‘;.“

- - ) . . ' -
(b) P ig on the same side of- I as the oripin O ; P 15 cloger.. | °

- (a)‘ PI \(E\0n L .‘ | !’ ; . o o ‘Hi“,( ’ "?%

) 1 ” b + ' 1 ) ' < .
than O to L. ‘ s
2 . . . -
() PI is on fhe same side of ' L as O.; PT';um 0" are equidistant A
. A . . . J . Lo ,
from L ., N F. Lo “_ . ‘ . '
) 910 Cut L . —
[y ' a : . .
P -"v . ,.‘
C - ~ . .
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6. Find the .dista.ﬁée befwe‘eh P and- 'L 5 S
\(8) P ='(6’8) 3 L="{(x,y) «12x -5y +26 = - 0.« e :

i

(32) L=[(x,y) 3x-l+y— o).' ‘j _ ‘

P
- . o

o fe) P = (-5,-1) 5 L = U*x‘,x)_‘: y = %x - T \ o
(a) P=(4,-5) ;L _-—'- Wxy) : E+L-1)0 I .
ME T 'T ”'5 ‘ .
Ly . ' L Lo
{e) P=(811) ;L= z(x,y> LY - 1<x - 3)1 .o

Te Find eq_uations of the lines biseeting the ang‘.Lés ‘formed by the. 1ines '_.'

. R (x,y) 3% - by+ 5 —"0} a.nd L = [(x,y) 12x + 5y .- 13 = 0} ..

E Hint: How is fn a.ngle bd.sector described as a.‘ﬁ'ocus?

- 8. Find e?;uations of - the lti'nes bisecting the aﬁglés formed by . 3
(Ll= x,y) ,'.-’+y+3£ 0} and@ L2 ﬁc,x) lex-—iy-l =0} «

A I S
(see Exercixe\:f.) A '”. L ‘ S ',,,.

. " A . 3
v .

9, Find equat;ions of the Iihes bisacting t}a’e a.ngles‘ formed by the. lines ‘
Ly % () ¢ hggieg¥ o 2y 30 S A b e 1) ena B

<o

, 'II .

. LB'— (x,y)lkx*u'gy-p2=0,?‘éa+ue _l} .’

(See Exerc:ise 7 ) - N ..‘., " ' ._‘ " ;;:'.," JREv_N
10 Write the equation r cos ‘é - 3 0 in‘i‘ectang\ﬂar coor&inates. E
’ : . ‘ I . .

11, Write the equation x s y'= 0 in pol&r cocrdinates..'v o

o C
12, 'f'.Writ;e the equaticn xe “ y2 3¢ in polar coordinates, -~

e &£
L. 13e ’n’rite the equation r = A4 cos'd A rectangu.la.r coordinates.-_r\.,\
Hint; Multiply both members of the’ equation by i .Check that the
L pole is in the graph q:f‘ ‘t;he original equaticm. Exple.in why ycm must ! ‘
' makg_ this check. “ ‘ ‘ 'r'-‘_, ‘ L AT | ’.

114-. Write the equation , r Ea ccs 9 in rectangular coordinat* '~;‘-; ",_-';
(See EXercise 13, ) : S toan v ,’(/

. - S '&:,‘ “
15 'I‘ransfom to rectangul&r form. : Q \ : ‘
(&) ‘9 = 60o ‘ | |
’ .'."“ . ".. . ‘l'v: !".v': . att f
(v) r sin 8 + 11. ek @ R P
Ty - . . <‘ ".‘” - .“ . ‘ A . ’,..‘ S ’

(e) s v T e e e e L

t‘ . "' . Lo (O . . - ‘- : . L \l-_ . . ‘ PR ‘ . ‘.

".:16, Sketch the locls of each *equstion in Exercijg‘lﬁ. Lo .
Wt . L e , . B - NN

»




[ . - . . -

17. {a) Transform x° +-&2 -'hx = 0 into polar'coordinatea.
;(b) Tranaform”§$F 5 cos 6 - 3 sin 6 into rectangular coordinates.

R | (c) Transform T cos(e - —-) = h into rectangular coordinates.

'5 . ‘(d) Transform (x"f yg-; y) = x2 + Yi:"IQtQ:P°13r coordindtes.
W X . : . - . . " ‘ .f\r‘ ’

2-9.:.8 M\ f
: o In this chapter you have encountered many topics which were already
familiaq from various sources. Our hope is that by gathering ﬁhem together,

»

we haye oifered you not only the.chance‘to refresh your memory, but -also new
- insight into the coherence and application of these ideas. 1 o .
. ¢
we Tirst considered the basis for coordinates on a line and the\\\\\.
: characterization of aubsets ,of a line in terma of coordinates.  Next we
ﬂ'reviewed with care the rectangular coordinate system in'the plane and various

" analytic representationa of a line in the plane. ‘ ' ‘;
. - AN Lo _
Polsr coordinatea may well be a concept new téryou.'vRelationa of both

‘.mathematical intereat -and physical importance may ‘often be repreaented most

simply by eQuationa in polar coardina-tes. B sl - * R Dt

Al

We hawe stfeased our freedom of chofce in introducing coordinate systems,

- 'The ease of our aolution of’ prdblema depends in part upon our foresight in
o iy eﬁtablishina..a.,x‘xaamrk of ref‘er*ce. .

In problem solving the danger aSways exists that we might 1et the
‘ algebra do our thinking Ior-da. A geometric interpretatidn will both guide
: and control our application of algebraic techniquea. Throughout this chapter
we have emphasized the_roles of algedra and geometry in the interpretation of
such cgngéptgﬁagfcongxueaeea_betweenneas, direction on .& line, the measure. of
angles, and the ‘measure of distance betweern points and lines.

Ty -

In the next cﬁapter we_shall study veector ; ctomss form in'themaélvea

- -8 bridge between geometry and aléebra, for they eometric objects
. f6r whi®h algebrai¢ cperations are defined, : S T
. : ! . . ® -
4
[ ]
- )
“ . q' . .
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Review Exercises - Section 2-6 through Section 2- >

1. Find a pg1r~of direction numbers, & pair of direction cosines, and'Q

L

‘pair of .direction angles for
. (&) the line containing the points (-3,7) and (4,-3) .
(b) a line with slope %% . 4 o R

]

(c) a ray emanating from {2 j) and containing | (-4,8) .

- (q) the 11?e L= ((xy) £ 6% - Ty + =0} .
(e) L = ((x,y) : ; : g = -y i h} . - g
(£) L={(X,y):y—{—x +9) . . . . JU

{(x,y)

1 .

R1
+
l
=
]

R (S) RY

N

-1+
5“

(x-5)) .. .

(h) L={({xy):y+2-=

N
.

2, In each part below determine whether the three points are collinear.
o ! : e o - ' 3

(8) (11,13) 5 (-4,1) ,amd (1,5) . B
(v) (1,-2) , (5,1) , and (6,-12) . ‘
() (23,17) , ( 1 -1) , and (-17,- 213) .

-

, (@) (o0,-%), (-3,8F, and (5,-115 | g _
In Exercxses 5-8 let A = 'ﬁxl) t 3 = (@ ,5) , - (4,;1) . l\f" : \

] Y

’ . . Py .
5. ‘Find the distances: d(A,B) , d(A,C) , (B, c) . -
-——
L, Write in general form the equations of the three lines AB , AC, BC .
5. Use°the results of Exercige I to tind the lengthq of thﬁ three &ltLtudES e
ok MABC.. . - , , -

§. Use-the results of *Exercises 3 and % to find the area of . AABC.*\

. '

7. In OQOABC , find'equations of - -
(&) the line containing the bisector of /A . »_-
. . . K“‘ » .
. (b) the line containing the bisector of [B « & . g ..
e .
(¢) the line containing the bisector of [C’.
. A . . ,
. . s , .
In Exercises 8-11 , lel:L; = ({x,y) : @&x - 3y + &6 = 0} , — )

L, = {(x,y) * 3x + by - 12 = 0},

] and . - ’ Ly % ((x,y) : x - 2y.+ h =0} .

g 93 ‘




? Find the distance from
E . () A to each*of the lines L, ,fLe', L3 .
E‘f&. . . ® : .
- & (») B toeach of the lines\IL, § I, , Ly . .
) :(c) C +to each of the lines 1 Lo s Ly - -
. 9; Find equatiqns for the two angle bisectors of the angles formed by
(a) 11 . N
(b) L L. . . .
l 2 3‘ .1‘ ) -
: & .
(e) ﬁ? > Iy
N ra : '. A . <
10. Find the distances between the,parallé!’lines* : ¢
S
(a) L, as-aboye, and 'Lh = ((x,y) : 2% - 3y‘; 12 = 0},
(r) L, as above, and 15 = {(x,y) : 3x.+ by - 1 =70} .
@ "‘tc) L3 as above, and L6 = {{x,y) :F X -2y +10 =0} .
11. Find two points pn Ll whigh are 5 d!!ts away from ‘LE .
. ‘ *
- X - 2
12, nd the angles Jetween I = ((x,y) : = 5 = §' —r)
. : La
' - 2
? &Ild ' L L.-) = {(X,y) j = Iy' 2} .
¢ / t £ - 3 -
13 ‘ﬂSéSw that L, - {((x,y) x - 3 P e }, 1s perpendicular to
_1,(.’ -2-3 T 5.2
3 N . ( ) X = 1 Y }1]
. W) T 5T
14, PFind the a&gles.between Ly and “i?'j-wﬁere Ll contalins the points
. . < . - ) }
.(3,4) and (-1,-1) , and I, contains the points (-4,6) and (3,0) .

Show that triangle ABC

~B = (-2,1) , and

is

&

- f: &— ‘ and Y
55 mrs

¢ = (6,9) .

e

- [

3

respettlvely.

A= (3,0),

& right triangle, where

£

-

Find the measuré ol" the angle whose "sides have pairs of direction costues,

.
+




7.

18.

19.

20,

28

3.'

ul

e
N

l?.

- ' &

Find the normal form-of the equations , T e
(&) 3x-Ty+29=0.
20 ' -
(v) ¥= TX + 58 . \ -
X Y. _ ’ -
. (C) 6 + :-8 =1 o0 - -)
1 -,
(d) 3)( - Y= 0.
(e) 7 =5x . *
Find the polar form of the equation of the 1ine .
. , . - ’
(&) which intersects the polar axis at (2,0) and has inclination %’1 .
. -
(b) Which is perpendicular to the polar axis at a point L4 units
from the pole ‘on the ray ogpcsite to the polar axis,
’(_c) contains the pole and the point (7, w7°) .
-~
Transform to&rectzmgul&r coordinates
» . -
a) r cos(6 ~ : ©o '
(@ reoso-Tr-d
(v) 3r sin 6 - hrcos 6 = 12
Transforn,rfto polar coordinates: /
Y X ’ y— ¢ a N \
+ZL=-1
) 7+ 3 .
8 v . N
(b)/.y = 5% - 12 . . ‘
/ .
‘Challenge Exercises
For each of Exercises 1-6 write an equation to rep:esentséll lines, o
paral&zl to 3x - by + 10 =0, N
perpendicular to 3x - hy +‘10.: o .
cont,aining, the origin,
containing ‘the point (2,3) , ? e ]
e - ~
cym:pining the poiht £ (4,0) and pars.llel to line in Exercise 1 ,
havingfélope -3 .- N R
. . . "~

¢ ¢ *q B
Prove analytjcally that the Lines containing ty bisectors of the angles
formgd by any two {Lntersecting lines are perpendicular,

- 8

> 2

- i . .
.7 485 -




fe

8. Prove: If’ Pl==(xl,yl) is not on. L={(x,y):ax + by + o = f(x,y) = 0} ,
then f(x,y) = f(xl,yl) is an equation of a line parallel to .\ L., '
In Bxercises 9-13 let A = (o ‘5') B = (1 o) , and c = (a, b) , where ‘b £oOo.

¢

9. ngve that the lines Lontaining the altitudes- of triangles ABC are
\concurrent gt a‘point H . Find the coordinates of H .

. . . *

1" Plove that the lines containing the mediards of triangle ABC are con .
curnent_gt a point G'. Find the coordina;es of .G . . - L

Prove that the lines containing the biéectors of the angles of triangle
ABC are concurrent at a-point I . Find the coordinatés of point I .,

LA * b [}

Prove that “the perpendicular_bisectors of the sides of triangle ABC

[

are concurrent at & point E , Find the_coordinates of point E .

"~

Prove that the points H , G, and, E in Exercises 9, 10, and 12

-\
eollinear, Find en equatian of the line containing them, - o .
] . ..A A * ‘] ? »
. <
r ) -
T ’
» . ‘
2 - ! N
(R " *
) N o
- “
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..." - . | ‘Cha'pter 3 _ T - .

. VECTORS AND THEIR APPLICATIONS - Co

L] ‘ . ’ S

3-1. Why Study’"%ectors"f ) o ) , . . o

L et The use of vectors is beceming increasingly important. For example, many .-'.

of the problems regarding space travel and ordinsry air trevel on the earth

are solved by vecfor methods . p e R
- .. . :
' '

' Véctors were Ereated by the mathematicel phfsicists William R. Heﬂﬁ}
end-Hermen Grassmen in about the middle “of the nineteenth eentu(y td*selve-the
meny-problems involving forces and motion. Sinee that time veetors\hsve been
applied in gany branches of science, engineering, and mathemat ics. The work:
of Hamilton and Grassman was based on the earlier development of ensttic i‘
geometry by René Descartes and Pierre Fermst in the seventeenth century Yo .

* ‘ - .
¥ "vVector method; and the non vector methods of analytic geometry are both f;,
- widely used in provingjgeometric theorems and thgy have become so interwoven L ‘
it is at times impossible to separste; thep. VIn fact, ‘seveg&l Books have | k)
been published recently under titles such as "Analytic Geometry A Vector -l'\-
Agproach", end courses in celcelus make extensive use of hoth vector end non- i
ﬂbetor methods interchangegbly, "‘This is one of the principal reesons for‘in- - .
‘cludiné this chapter in our book--to give you an additional tool te apply to ‘
. find interesting relations among geometric objects and to prove some geo,metricl '
theorems An additional reason is the future need in scientiffb or engineer-4 .

ing studies or in méthematics courses. ‘o ! ’ é; ‘n '- . -

A}
To understend what follows you should recall whettygu leerned {n your
- , course in geometry If you have,studied about vectors befo:e, part of this ) .
- material will gserve &s a.reviev end you may be interested in comparing the two W

- gpproachés to the subject. However,'no knowledge of, vectors is ‘assumed. < e
. : g B ‘ * : - 0 o . "‘ !
.3-2. Directed Line Segmente and Vectoﬁi. . o “
. in Chapter 2 we encountered directed h.he egments, which possess both

direction and magnitugde. ‘A simple exemple of this .geometric concept is that -
N

~ LI '
. '91 97 .
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~

. of a motion or displacement elong a line. ‘Let us say a bof sterts at & given
point ‘ands wallm two miles. We don't know much “about l}is trip until we are ‘
told the direction in which he walks or'the point at which he ends. A dis-

\ L

plaeementrcan then be represented in one of two ways: :
(i) By a directed segment extending & given distance in a given

« direttion from a given point. .
(b) By & pair -of points, one identified as the s;arting or initiel

point, the other as the ending or, terminal point.

. The symbol (AB is used to denote such a directed line segment thSe
initial point is A . and whose terminal point is B. '

* . - . ' , i .
-8
2 -

DEFINITION. By th\)ggggitude of the directed line‘!!‘ment AB we
mean d(A,B) , the ledgth of the associateq segment AB . ,

, . ‘ ‘ - . '
We now turn our attention to the concept of a vector, which is closely
Vectors were-

“

"related to the geometric contept of a directe& line segment.

vt
+ created by physicists to deal with cOncepts such as force, acceleration,

.veloeity, flow of heat, and flow of electricity.

~ To undenetend this new concept, we need the following definition:
* . . \

Directed line segments will be considered gguivalent if-

»  DEFINITION.
and only if they . o .
. ‘\ . . .
a(1) 1lie on the same or parallel lines, .
s .

(2% have the same sease of direction, and .
‘(3) have the same magnituden

'

.8

For convenience, we shall use the term "parallel” in the sensge of statement
(1). "if and only 1f" means that the statement and its EQQ{QrSe

are both true.

The phrase

-
-

L]

DEFINITION. The infinite set of difected line segments equivalent

to ény given directed line.segment is called a vector.
¥ + . -

. .
-

’ -

€ -
-

Here we have an infinite set of,equivelent fractions which:

2 3 11

from erithmetic.
ras ,
30528270250 o)

represent the - same quanﬁity; €ige )
2

\

is called a rational number.

¥

2 98

3 L

L] -
To understand more fully the concept of a yector let us recgll an analogy .

Such &8 sef <




RIS . ’ . . - .
! -

It is cémmon in many texts to use the word, vector to mean, not the whole
set of equivalent directed line- segments, but sny single member of.that’ set
. When convenient, and when there is no ambigufty we will follcw this prqcedure.
When we us® the word vector in this way, and say that- two vectors &re equal,

we mean they are members of Qpe same set of equivalent directed: line segmepts.

. ‘ s - ‘
In the_easé of the representation of ra\ional numbers, when we say E = g we

-

mean that these two fractions represent tff same rationgl number. We shall
represent a vector by‘any of its members and 'we shall denote guéh directed
line segments by ¥ , P, ... - e -

.

Each rational numbeﬁ has a representative which is considered the
"simplest", and that is the member whose numerator and ﬁeneminaﬁor have no (

common factor. " In the example above, % is the simplest re@;gsentative of

, the rational number, e 0 ,
<

In the same way, it will be convenient to have a "simplest'" representat{ve
-‘fgy each vector. For this purpose we . require g Yeference point En space which
we sh&ll call the origin, .Any point in space can serve as the origin, and ko
emphasize this freedom, we state the following princliple: ; ‘ '(

. N .

ORIGIN PRINCIPLE: Vectors may be related to any point in space \

s an origin. 'Y : f
kY

-t

.The usefulness of this principle will become evident when vectors are applied

to the sclution of problems.

After an origin is selected in, space, each vector (or equiylilent set qof

directed line segments) contains a unique member with this'erigin gs its
"initial. point. We shall call this member the origin-vector and it will serve

as the "simplest™ representative of the vector. The symbol A will be the,.

origin-vector representation for the vector Y ,35 for b, ... as shawn in

. Figure 3-1, Note that to eaeh point A of the plane there now corresponds &

*

unique origin- veetor A %,




v .- o Figure_?,l' ' . e

e -

! It is important to note that we do not alvays wish to use the sin@.est

representstive. For example, in adding é and 5 ) we find 1t most e@venienf.

to use the member 5 instead ef -é— a.nd E' instead cf § Likeviﬁb in - "-_
. dealing with vectors, we shall frequently find it. ‘more convenient f.o use &
reprecentative of its set othey than the originivector.. . _ -

” X

. Vectors are very frequently. associated with real numbers. 'In ‘Eiisoussiona

imrolving vectors, real mmbersr\will be referred to as ‘scalars. The scalar
_whith is the length of T will'be denoted by |[&| and will be referred to ’
8s 1its magnitude or ﬁ:solute value, Other exa.mplas of scalars are the measures
of angle, arcs, mass, and temperature, You will: find it helpful, to ccm:pare
these with the examples ki’* vectors given earlier, LA '

. .
- . ~

i

_DEFINITIONS. Aﬁy origin corresponds ‘to an object called "the

' ero vector and is denoted by O . . .\
~A vector' of unit ieéngth is called a unit vector. Note that ' A
) —_—
. _a_. is the unit vector along & . - -
. fal] = _ , - .
L] ]
4 . -

Note also that the"zero vector hhs zero magnitude but no ;rarticulaf direction,
\ .

y. £

A unit vector exists in every direction.
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; Exereises 3- " -

. 1. Dre.w 8 vectqr frod (3,2) as defined ‘fn this chapi;er end ind:tcate its ( ‘
‘ ~ simplest represent.ptive. L | . ETE

+
.

2, For the figures below indicate the seﬁe of equivalent directed 1ine s

. segments. ' . A _ S
B D F H J ' i o T ' |
< o - angh - —— N coeeme— : R
| + 1 K L . N R
‘ v . ‘ , o .,- « P - . X ‘ ‘ ..
c E { 1 d e
£ - . | . ) . ‘ " ’ ) ° :
G ' ~ -
A , B &
. !
. , . | . ) R' -“
~ . Cs i '\U

[ ] . ' . .
. . ) . - . [ ] ‘a

"3, Given the vertices A , B, C, and.D of a parallelogram, List all the
directed line segments determinred by ordered peir’ of these pointe. T -

Which' belong to the same wvector? S /

L, Figure ABCDEF. is a regular hexagon.
~In the di)agramz find three replace-,

ments, for X and ¥ to make each

- * of these statements true:

5. Show the simplest‘”:;epresentatives of four different uniot vectors on a
plane with a rectangular ccmrdinate System, ‘Do the sa.me on a plene with
. a polar coordinate system. *3

6. Idst five genmetric or physical concepts not listed in this section,

~ which can be represented by vectors. -

I . é




Sum'and‘ﬁifferenee of Vectors. Scalar Multiplication.

To get anythins of either mathe?htical interest or physical usefulness,

1t is necessary to introdu\F operations on vectors. Since forces are con-

. veniently represented by vectors, we may consider the problem of replacing
“two forces acting at a point by, a\single force eaLled‘the resultant, A Dutch
scientist, Simgn -Stevin £1548.1620) experimented with this problem and dis-’

, covered that the r€sultant force cpuld be representeh bj fhe diagonal of &

parallelogram whose sides represented the original forces.

. \
ot . Lo . -

i
'Figure 3.2

. -

/
Thus a defia{fion of vector addition is made which is. consiatenﬁ with

observations of the physical world. .
’ 1]
Before presenting such a definition, there is an important.distinctipn

to make betueen the use of origin-vectors and other vectors. .You must be
< .« .
aware of this distinction.‘ .

.
.t “ ~

We have alresdy agreed ip- the st-atement of the "Origin Principle® that

«vectors may be re}eted to any point in space as ah origin. Cne reason~for
' stating this principle‘}s that it is more convenient to deal with origin« .

vectors wnen we seek a geometric interpretation.
—_—

¥

{

[3

We are about to define operations'with vectors and, prove several’ theorens,

In order that the u¢!cﬂ‘origin—vectors will not limit the application of the "

e

-

A

resulte we state the following prinéiple~

<

&

PRIGIN-VECTOR PRINCIPLE.

The sum and offference of vectors and

& L {
- the product of a vector by a scalar is equivalent to the sum,

,diffenence, and scalar product of their respective origin vectors.

L]

o

»

. 96192
S~

»
1

Thexrg is one more'signifidgnﬁ/stetement to make In this regard.

. .

X —
-% ’
All

*

. - : [ ] -« e
pr&ofsrusing origin-vectors depend-in part upon the fact that all such vectors




' f V .
phave & common initial point, The extension of such proofs to vectors in

!

!
general can neadily be made by choosing for any vectors those rep;-esentativ'es | #
1
.which have a common initial point. ‘ - !
v : : l
In other words, the ebrait relationships between vectors will hold in
general, but the geometric interpretation must be limited to the geometric
conditioni assumed in the de\relopment‘. SN O -
DEFINITION.
(1) Tet P and Q be two non-zero vectors not lying in
the sate line and with a common initial point 0. '
We define the vector sum of P and Q designated
. by. P+ Q@ , to be the unique vector with initial .
point O and whose terminal point is thegvertex T
opposite O 1in the parallelogram formed with 'IT
© - X .
- and Q as sides. ' . ) * .
(2) If T and Q have the same direction, P + Q.18 .
. <
the vector yith the same direction, and with nitudec”, , \

- equal to the sum'of the magnitudes of P and N . b,
o JIf P and '5 have opposite direct}oﬁs, T+Q is :
the vector with the same direction as the véctor of
1arger magnitude, and with magnitude ‘equal to the

" gbsolute value of the difference of the two magnitudes.

-

i

(3) TFor sny vector P P+ =0+ =§,where 0

denotes the zero ‘\rect'or. : >

-

o

e




. . ‘ \,, . ﬂ -
- q
| 3-3 . . . . ) ,
R : S . ‘ : 1
| In arithmetic oneé usually considers multiplication as repeated addjtion ‘
of the. same number. For e e, 3IX2=2+2+ 2. an &Fogons defini- -

tion is made for the multiplichtion of a véctor by ® scalar, | Thus
¢e38=2+X+2 ., 'The kecoﬂdepa;rt of the ‘above definition also tells us that

A+ K + X is a ve’ctor parallel to A with the same sente of direction, and A -
' a magnitude thrae‘?imes as large\. Generalizing this idea, one can state the

f‘ollowing definition !

\
i

v
L . ‘A

, \ 4
DEFINITION. Let = be a-real number and P any vector.
Tes, - ,

Then rP 1is defined by [ . !
. : . \\ . . -
(. (1) If r>0, then rP 1is the vector wiﬁt same ‘diYvection .
as P and magniﬂlde T ﬁ.imes the maﬁnitude of b . v

(?S If r< O , then rP is.t}\i.e vector with d..irerc‘tion .
opposite to. T and magnitude |r| times the,

o magnitude of P. : A )
(3) If r=0, then rP=0. "
(%) If r=1, thyen P=F. ‘ .

When r =-1, rP = (-1)F and ge dendte this veator by the symbol P .
The vector -P has the opposiie sense of directi&n of ?P but hgs the same -
magnittde &s ghown in Fiéu}re 3, .

" ‘ .

™ I. o ' G .
Figure 3-k .
. . - § & Co - 0
In accordance with dur earlier definitions, we? note that if r £ 0, rP

f

"is always parallel to P, . ) i )

It 18 now possible to define one kind of divisi‘on of two vechors.
. ] .

a

”

o . | / | | o , 1
‘ 104,/ 98 , : ‘ o




1f'K'a.nd
: [}

nmimmok._

»

B

wtm- N :

.-
=k,as
k L]

are parallel

k .

“\-

We now can also make the following d\efi«nitisn o

.
+
-

v' , l ® N . - L -
. DEFINITION. A - T means A + (+B) . The quantity A - B
\' ; l . . ’ R ' ¢ - . . . .
1s called the 'difference of the two vecg:rs A and "B . ' e

' - . ¢

. Thus, in order to find th cﬂfference. of -two., vectqrs, .A and B ‘we memly
need tofadd the negative of the sec&nd to the first as shown in Figure iﬁ

‘) ) : ‘
t . .
‘ - . . ¢
. - ’ . - LR .,bn
« R :
v ' . . «
i

Figure 3-5

=B+0-

Now that we have made the above definitions we are’in a position to

‘. ' - . ) e
Figure 3-5 also shows that 1f A - B =_§ , then A

illustrat:e the distinction between the use of origin-vectors and other vectors
ferred tq on p. g8. For example, the sum of vectors af,.and qE An Flgure

3-6 is equivalent to the sum of their respective origin-vectors

* -

! . ] - 1 ) . ‘ | . \
)’ - .7 :
4 . 105 )
' , o 99
(‘ 5

AandB.'




i Sy . i .-
Figuregj-é o, K | L
‘ - ' : o s .‘> Ty oo f
, It is not even pecess@ry that vettors &8 and b haye the same¢ initial '
" point, (See Figure 3-7) | o TR »

»
n

~ o ~ Figure 3-7 -

£

An impox;;aht application of the, éboé principle is shown in Figure 3-8
whep the sum ot £ and T can be found by considering the equivalefit of B7
with its initid} point coincident witih the terminal point of & . This met/t}od
can be dpplied to three or more vkctors. ) '

. .
. >
-

¢ -

. .
- . .




In applying yector methods phyaé.cists ahd other scientists off‘en consider .
that they move a.round a diagram a.nd then equate the corresponding \nector
sums, we could "mm" from . A. to D dinectly{ or from' A" throush B and
C to D. Ifthevectaifrom A to D ir called X, then =T +D+T .
s 'Likevise, one can gd frod A to C. via tWo mutes with the result that

¢ ' .

a+'s wc._.f LR . , 5 . ‘ ..
R T P
. - ‘, | Bxercises 3-3 « - : t

1. Using the figure sms '§1ven‘,é | .

s supply the' m‘lssing vector Y

., éxpressions’ AN

(a) R+B =7

) P-A=1 . oL ‘

(C’ -A-ZE + -é. = 1 . '

(@) D438 = r.éh (find ) ) y

(e) -E‘-\ ? = E

‘ [
« ‘ ., .
. ? - . a ,
R S SR | q\mdrilatera.ls oCDA , OBCA , ‘
» - ) '
R s ., &nd ( are ps.ra.llelograms .
. o } R F . - .
3 . r/ m/ . .
~ a 9 ‘ - R r\
. ’ ( /{_ |
f Q .~&107 .

€ \‘1 ‘ : ' ‘ ) . |
“EM “va ¢ * ‘: i+ lOl . . ! - ‘ T .
'""" a © - £ . ‘0- ,J. » r’. e f ( ‘ 2 . / . r ,' | ) ]




|
:
i
|
]
]
|
|
?

Ca.nd . I

2., In ‘the figure,f* B
; " D are vert‘?gq of ‘a pamllelogmm T +/ ~ - _
> and determine the ﬂmtgra indicated.
. (a) Express ",- P d"?n in
[ L] : A
termi of a ,.and ] alone, :
. . . ‘ t . ] L'
* (b) Ex"press ’f in tems of 3
\f‘ . * I
. ' M (i)\ & .arsd \‘-’1\- i ’ :
P f N .o E ]
, (11) T oahd T N . .
. (111) T and be * R ;!
(iv) & and 'd o . Lt
LI 1 . o . f.
(¢) (1) wnatisthesﬁmof.d_{é‘,and I .
' (i1)e What is the sum of E,'S,'&',anc;-"&‘? ,
v 3. Dra“ on paper the vectors ¥, V%, . .
. 3nd € as shewn in the figure. R " .
N ‘Construtt the,vectors: .
PN - [
(a) b +T. 3 .
(b) E - f -— - - .- 'c- .
~ (¢) €-01 / T
' (@) F+B+% .
. : “a . . ‘ . - o
.. 4, By a drawing, showthat}f a+b=C, then b=TC-%.
] . -
. . y )
i 5. 0, B, and X are collinear pqQints. Find r such that
. ‘ - . o )
he | ' ’ : X = rB
| g P N - o e )
« ‘ ' . &
* o . _ «
t . (a). X is the midpoint of OB . . ’ ,
. " (b) B is the midpoint of OX . \7 L .
l (c) O ie the midpoint of, )3x "
- ) - [ $°
(d) ‘X - 1s 131 “of the.way f‘rom 0 to B. -
. ] . " . " T e
- - (e) B is % of the way from 0 to.X,
! ) ' ) 5 ‘ .
D (f)Oisgoftnemyf_mm;ato X. o )
; N - - _ - * ‘ * -~ [
, 6. It =0 Qd < = ,prove a+c..'5+—a' .
’ A Lt 5 o & -
7. If |a| = 3, what is - |4A] ¢ {-5'5[ v -|5K]
- ' * - & . 3 .
8, Prove: If Ee= D &nd if r 1is a scalar, thep #19"» vrb’.‘ ‘.
l ‘e . - . . L o o
| ‘ 4 i
| | 198 2 ~ '




16. 'Ihe figure is a vecton diegram'
P based onka regula.r he;:agpn. "

L ) e R - T3,

.

o .-_F,gf.‘,‘ : ) ctie : - .
. USRI - . - .
- ‘v" ' ." a - ;
. r - ' | ., W . 3-3
L] . . : ¢ N . ~
'9 ﬁ? B a non-zero vectof .dnd-if ,hEL = k ;. what can you sgy abaut

‘ ."‘ o *911’ St e . N

(a) Write & vector equetions
. yhicﬁ should ocqur b0 enyone*

f in the claes. : .

L. . ‘.. - «
. * ~ . L] ‘

(b) ﬁrite 6 more Vhieh are not
Lo «abvious but whicﬁ'ynu cquld

,'

;’ f;_}ﬂwm C el ;‘-1.. -

et

11, By usingrve tors, indi@ate .5 different paths

could move fr

(152) to Q= -(h, 6) - . ‘.T_é‘.

(b) If 3 -D =0, does B-% 1
' a--- - . /. . ) . "
13. Prove fa +d| < [a] + o] cor . \ .

.Y
14, Ietting 1 inch represent 2 mileg, find graphically the resultant
_ motion if a car travels L, miles north and then 5 miles southeeet

assuming ‘the car travels in 8 plane,

5., Using the idea of reeultent vectors and a scale of 1 inch-to
represent 2' miles per hbur, solve the following pyoplem graphically.

E4d

" A river'hes & 3 ndletpef#hour current A motor, boat moves directly
¥ across the river (perpendicular to the, current) at 5 mbles per hour:’"
<%Icm'fe.st and in what directien wauld the ‘boat be traveling if there were

-

no current and the same power and heading vere used in crossing the

.. #

river?

\

16. Make a veqLor drawing with a scale of 1 inch to,represent 10 pounds
to solve the following problemr. . ' /

- e

s ' « & -
A body is‘ected on by two forces, A and B , which make an angle-of

70° . with each other. The magnitude of A is 20 pounds and that of .

B is 30 pounds. What is the megnitude and direction, of tHe
" .

resultant force? S Co, ) ..

-

e 109




= g - N - LV, x . e, T @ B

. . - M e N LA - _ - , s -
- - .
. v Y - . S : , N .
L3 K ¢

i . 12 .. - . N A - . .
. . .
"‘ - 3-!& ® . Y - ~ . 4 o * ~ ' ] y
! . . .t ' v " 2
;

N
- [
o

. ~/f .. Show that 1f A and B m distinct vectora, then .\.E« (-1)3 A ~8 "

4 5. . 1 lesona Line parallel to the line througlt fhe, teminal oi:o;.nts of 3 -
© ... vend; B,andeimnm-lyfor B-A.‘- e e ! :
ST 18, 2,%, T, and" 'E are consecutive vecton, sides of a qusdri,lateral -
. -+ Prove that the. figure is a parauelogram 1£_gud only 1f > +'d =7. |
‘. \ 1 " . .
- ,: ' .;é; Prove that.the sum of the six vectors (h'a:m from; the eentemf a regu]sr
. : he:mgcm to 1ts ?ertiees {s* tha.zero vector. o g L '
, . . . . K L 3

LT e0.) R wa.trace the perimeter of a-pqugon' ABGD .~, PA , , and assign a vector
- ‘, , 3., b s < ’ K ces’ 2 p qorrespondipg to each ﬁde ,as we traverse “it,
e -

show that ‘the vectdr sum a 40+ c + ren ces + p = 0 . (It is this dea
that pbysiciste- have in*mind when t«hey say, “I'he veetor sum around a,

closed eircuit is zero." .o O
‘ 4 P . H . R ) .v v ‘ L , . 0'
F . . . 3 - - . - . .- N
“properties. .of Vector 0peratisns A ’
) ~y, ] - e .t v
‘ We uow\derive severa.l impprtant algebraip. roperties of* the opemt'.ton of .
. . L
'veftor addition.. « K ‘ . . . . ‘. oo ', -
) ‘ - - 1) ‘ . ‘Ag. ' ‘ - N " ) A‘ ) '
THEOREM 3-1. (Commutative Property) . ’ ) . .
] . | ’ : *-a ?
S )

L] -~

F . °

“ . This f®llows from the definitiof bf vzector 92m with the helﬁ of Flgure

-

:

Figure 3-3

, - | ' s | ;
' . lléu” o "- | ,




A

This fol_lm ifmediately from the definition af addition of \rectors and

of (l)A S

"

Next we prove a theorem concerned with multiplying vectors by real

numbers.

THEOREM 3-4,

e e—

3

I

. . o
* Figure 3-9 *oe .
‘ ) Figure 3-9 suggests & proof using the various parallelograms which - ‘ &
. appear. A much nicer proof will be given later. ; )
. ‘ ' -
THFOREM 3-3, (Additive Inverses) . . - .
For any vector A , the equation - . )
\ . ¢ X+X-=-°9
is satisfied by X = (-1)JA = A . -

i ; S R
| - . 3
’ . L - ‘5“ ‘. ry 3~h .
8 m 3-2, (AssoeiativJ Prorperty) f. "_. ; d
| . .o F+(q+n)ﬁ('¢+q ,,R, | . )
- . o~ - “‘ - / 3 V’ “‘q
‘ L ) .. "‘ . -

(Associative Property )

| (rs)? = r(sP) .

[ ] : a
This follows immediately from thHe definition of each member of the

-

equation,

105 \ _1;11




. Y *$
' L35 . . ; o
s . * . ’ . , £ - .
'\ . . ‘ ‘ . ' [ - .
E . , Exercises 3-4 ' . Coe
- ‘ . -
| . v
.. 1. By using the definition of subtractidn, and the comut.ative and asgocia-
e 7 tive Fraperties, show that ., | . <0
) RIS o 0 NS SR .
RIS RS FY S
C 2. Draw on peper the figure showing. '
. ‘ I and ¥. Leca.te Point X
- A - . sugh’ that Y=pﬂ+_q§, '
- (@) if p=1 and g =} s
. R | 2.
, (b) if- P=3 and a=35, -
. & . l . 4
I (¢) 3f p=0 and g =5,
. . \.‘ , . c - b
. 1 1l
d if = and = -
()74 p=3 and a-3, , .
. . (E) 1f P =I];‘ and q = % . . l. . .
'3 - . . '." l' . ’ N
Can you make & conjecture about the values for. p and q for which X
. dson B ' .
3/- (a) Show by a vector drawing that the subtraction of veetors, €.8,
-.\ *
. - B , 1s not ggmzte.tive. : : .
(v) I there a relation between the two differences, i.e., does
-B - r(B o I
; 4, Prove Thearem 3-2.
’ 5. Show that T+ -=---7. ( .
i ‘6. show that (-r)¥ = r(—i’.) .
. t "%
3-5. TUharacterization 25 the ?oints on a Line. ' B

A ¥

The .term "linear combination” was first mentioned in* Chapter 2 in connec-
/}ian with finding a point of division of a line segment, Now that we know hcm -
o

add and subtract vectors and -hon to multiply a vector by a scalar, we can

2

rcombine these operations to create other vectors, such as 21. - 3%, —(ﬁ + ﬁ) 3

‘ and {1 - x)x + §'§ To formalize this idea, we state the following

bl

definition . - -

112
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.DE'INI‘I‘IQN;.L‘.‘ '6'1,52, ...,an -are | B vectorsand xl,xe,‘

vees Xy are n. sca],ars, the vectOr tl + x 8, + . +x'§'

n
- said to be aélinearccomhination of Il s eney tn . ¢ )
; : . f'!\ ' o N~ .
In order pc use, vectors to proye theorems in geometry we need ‘several - o,

basic theorems. The first one 15 concerned ‘with exprpssiné any vecbor in the e

- .

plane as & .linear combination of othe? vectors in' the'same plane.

Y ‘.. N ' - : - . * < - E . ' .
THEOREM 3-5 3-5- If a and T afe coplanar and, non-parallel then any third . *
vector T ’ whieh lies in the plane determined by-* a and '5. , can be )
) expressed as a unique linear ecxnbination of B, a.nd ‘5' A , C o
. o ' . S
. . - e s - . - . - ] ‘ . :\)
.« Given; Goplanar and non-pamllel vec‘tors F and ‘B and . quing . '
in their plane. . - * .-p
. ' .« -
—lie - CF ) ) . ~ . ' )
Prove: c = xa o y'g where Xx e‘r_ld y are scalars., o .

.

-

»”

‘Flgure 3-10

Inasmuch ae vectors 'a~, % 3 {md 'c? can be represented by their I"eSpe.c-
tive origin vectors f ﬁ a.nd ? vith teriinal points A , B, and- C ‘as®
shewn in Figure 3-10, we need only prove that E <2 yﬁ' In this dlagrem

ve have chosen x and y positive although this restriction is not needed.

~« (1) Draw s line through C parallel to the line containing T, D be,
the\;point of intersection of this line with the line containing

T . hl
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(2) since ‘ﬂ' ia parallel to. X, it is sqge scalar multiple of 3 oot ;
- Thus, for some unique x,'ﬁ <X . . .' ‘ ) -0
(3) ‘fimilarly, the vector ¥, along the line containing p: ¥ fis a sc&lar .
niultiple of ¥. mnus, ‘ some unique v, ®=,8.
(,h) 'l‘hen U' 'ﬁ + 'E' xr+ yF which shows f is a unique &inear/cmnhinstion .
* of ¥ emd ¥ .. We have the equiﬁrilent ta.tement- P )
¢ is a linear combination of +a and F - ‘¥ L
We note that if a is parallel to & or T, thén c is a scalar mzltiple
of either 2 or "E &lone. R et T
}" ) » " A . ]
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THEsREM 3-6 6 (Dist.ributiw Properties) S ] . O .
1. ri?+m=r?¥ra . O-, = : B .'.\ o | r
2, (r+s)f=1rF+F 0 ¢ R ) '
e : . . -
. o .
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F{gure 3-11 . ‘
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Proof of Part 11 r(F +3q) = P+ T . '
In this proof, we assume’ ¥ and ¥ en_distinct lines witke r >0.
(1), InFigure‘jll r-8,8-F.
' Therefore: = rl‘a[ {F] = rrlg[ ’ .
- <*




(3 B -a0®-awp), T ,
IR = alo,a) , o e T O .;’. “
2| = a(o,P) = a(h,c) TR '
m[: d(O&Q) . .' R e - ._. ._ '..‘:. R

’ (éf : s;i'nce the vectm;é ar_e in the same dirgctién"} we bave = .,

(1) Gombining steps (2) ang;" (3)- we have "‘“ D) a'(.%:—y ; qnd tnerq;ore -5

AOADNAQQCQ 1 Al, ‘ ’ ! . "“' . -2
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o Bl= it - A

(T)ﬁ x+f or i A - « -'.‘,t

= r§+rF and since 8 ?4.5 ; - SR .y
I'(§ a)=rf+rﬁ ‘ - ', SRR

»
Let us considek the specisl cases where the non-zero vectors' ¥ ‘and § .

1 . : :
are collinear, They are then parallel and have either  the same or opposite PN

genses.

. . .
. ¢

If they have the same sense of direction, then

\(1) By definition, ® + ¥ has the same sense of djretction as- ? arxd 'E ’

and has ‘magni tude IFI + 1§ . ' '

€

(2) If r >0, then r(? Q) also has the batie sense of direct:iop as ¢

P+, 'F and § , and has magnitude r( ['P! ]'m).= r[?l'n- r|Q] vy I

definitidn, and the distributi,ve law.

(‘3) In the same way, since r>0, %+ r'f has the same sense of direction

as‘r? R ,P,and §, and has magnitude |rB] + 1] = r[F] + rl’-} ,‘.

(Lt) Since the yectors r(? q) and 2 rd have the same magnitude and
the s&me sense of directiocn, \they are equal, as was to be shmm.

\ _The case in which * and~q hale cppasite direction is treated in a ,
similar fashion and. the procf is'left for class discussion.

The proof of the cases where r<o is alsc left for class seussion.
The procbf of the second part of the &istributive lawhl(r + SF ? + 5% is
left ab:an exercise, -
; \\‘} L . . '
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o - 'EEORE&Q_. If 'Ea:;d 'ﬂ' &re'd'istindt vectors mot lying in the
o . fate T

.. i . : L e, -

~same line, then the vector R +gB will tefmi
. line determined by the terminal points of X and '§ 12 and.

. - . § ¢ » ’ .
L iny ‘if P + q = l N\ - e ...ho St . ‘ | . .
, <A
. t .
-~ o, '
) . ’
* v .
e—‘ «

. ‘Q ) . . =t
¢ ‘§' '_ ‘&,
S ~ .

- : v : . _ .
- Proofs . o ' ' . v
e R 6 is"coll'inear with A and B if and ‘only 1f ¢ = A or XC || O5 .
< .
o . (2} KT || OD 1if and only :gf there exists a g f 0 such that X
) i » ! ‘ o~ . t I Q(g - K) _ ’ . . : !
or - C=}1’«Pq§-q§ b, e
. - or _ T=a8+(1-q2 T . .
A * L
or o ‘€=px+q‘3‘ wvhere p +q =1 .
We note that if q =0, t_fxen‘ T-7. ‘ | ‘
o . The statement T = gB + (l- - q)f is a vector form of &n equation of the
L - N . ‘ ,
. line through A @.nd B . s ’ o ‘ _' .

. ‘Bach particular ehoice of p (and consequently of q) referred to in the
Theorem 3-7 determines a vector to a point on the line AB n Figure 3-12,
We can therefpre(describe sub"set.s of the line )1 by '‘placing conditions on the

¢

s scalars p and gq .

L}

The line AW = {X:'¥=Px+q§ ‘:there‘ p+4q =1}

\. The segment AB = (X : =pK+q§ wvhere p + g =1, and pzo,qgo]
The ray B-x:7- px+q§ where p+ g - 1 and qEO]
\ ~‘I'heray EA.—{X. ,QA+qB where p+ q =1 and PZO}'

t
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' i X B N .\ . - - . .‘gi

. . --a . . . . X B r

. N : ) re
"Iherayopposit.et& E-(X f pf+q-f 'where'p+q 1 and q<0] .
ﬂ&iein@eriorof ‘=,{X.s =‘pﬂ+q‘§ where p+q=l and p>o,q>0}'

( 1 .. -
. ‘ | ) .

.‘ .. L ‘ ‘ . ) - .;. . . o . 10 ‘37'1?

Furthermore,
(1) 122
.‘aainteriorpoint
.« (ii) ir xspﬂ*-qﬂ‘where pt+aq-= Z 1 and either p or q is zam,
then X isa.nendpoint of RE, a.nd . g :
111) 1" ¥ = pKk + g8 'where p+a=1 a.ndeither p<o or q<0‘,

-

. Ve observ'e that in the. vector representatiun pK +e (l -p)E the sca.la.r
1s also & coordinatq in one of the coordinate syftems for the line. When ~
p-O,weo'btainF when p=l,weobta.in§ Thevalueof pwhich
"detamines d vector mws vector represent.ation cf the line AB is also
the coordinste of the point X 4in the coordinate system for the line with

ori in_ B and uni'E -point. A’
g

THEOREM 3-8, . Yf B atvides T in the ratio n:m , thes
| Y- mA + nf

L) s
—_— where A , B, and’ T are origin-vectors

to points A, B, P respectively, °

Figure 3-13 . ..

*(1) Referring to. Figure 3-13, ]M % (Given).

k -7l o g
. . -p. - g n ‘
(2) = <= (the vectors 1lie on the same line). .
b - -ﬁ‘ ' B ¢

. - i N ' . ' . ° e . O T
e ' . . .

. .
v vhere p+q—l,p>0andq>0 then‘i .
5, .. . o '.\.-,‘_

'..thenXisapointofthelineextériortom > L

<

T et




‘-. - - '4 * ¢
i 3-5 ." * ’ M .
. . . - P 1 B Py -
| ) . ' 1 | P .‘ ‘ . o
- (3) m(?-a) n@-p) A R S
' (Mmp*m:nh-np.. o . '
] ) . .*__ ‘ ) - . . ,
o Fededed, L o
: ? ol . adn ) :
(6)€(m+nﬁ=m+n‘5,ar prz—‘qu ==,m+Ln +mf. . -~ .
. - . N A . s . N - .
(7') .In terms of origin-veétors, we may then write: _ .
=TT L r mA‘+ _-- n K ’ vy o
: . B TR m +.0 m+n : . . '
. ! Q‘
Wote: If P ,15 the midpoint, then ?- E(}&‘4-’3) i . '
) T, - be s : " «
- ) Exercises 3-5 A B - e

1. Given vept.ors X,%, ang # with their terminad points A,B,and C
onastraightline, so that '5 pﬂ'+qﬁ p+q=1 .

‘e
(a) " What happens if E or f is the zero vector? T i ¥
. | wiat are 'p and_g if T=17 . | P
' - “c) at can we say about. T ir T . . -~
- (1) p>0 ang q >0 ¢ ) : : .
‘ (i11) p<0? ' .

Y
e

(111) p =0 1%
) (@) Construct figures to illustrate’ the cases:

1 R .
(1) p=qa=3 ’ -
. 1 2 €
(11) p = 7,9=3% ' .
' 1
-(111) p'=-‘1;.q=15; :
3 1 . ) e
(iv) p = -é- 2 q = - § ¢ -~ .
2. (&) 1If the ratio of the dtvision of ‘a 1line segmen% is given by X \n:-
- f
nm=2:3, find n and m so that n+m=1.
(b) Seme as part (a) for m:n = 5:-3 ‘ K
3, Make a vector drawing to illustrate Theorem 3-5 when ,
- (a) x=2, y=3 | . .
(b) x £-2, y="4, . ' .
. ) . ) . . .
L. Prove Theqrem 3-6,APe.rt. 2. . 118 ;
Q ') _ p
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We have used \xtensively the cci*respondence betmen point.s in t.he plane
and vectors. It 1s fruitful te deacribe this corres@ndence in another wny
using the rectangular coordinates of a pcint To each erdered pair of real
numbers * (&,b) s there corresponds’ 8 uhique vector emanating from O and
terminating ;ln that- point and. thus we mke-the following def‘inition. \

3'6 Componerts . ¥ 4 o

o

o~ - -

' ‘ Y . S , - . . —_-
. DEFINITION. - ‘The symbol [a,b] degotes "the origif-vector to - -
point (s,bz . The number a- is called the x-component of
. the vector and the nufiber b , the y-component of the vectdr,

]
L
=

-

. - _ ‘ . :
We now describe the operatiome involving vectors™n terms of components.

P

. . -

1f X=[a,b] and Y= [c,a], ~ ° |

T+7T- [a + c--,‘b +(d] o , ;

113
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r‘ : ,  Proof. The parallelogram in Figure 3-1i4 is eonstruc,ﬁed hcc@rding to  *
the definition of- add.ition of vectors. '

, Since AOMY = AXRP , d4(0,M)= d(x,R) = d(s Np=c and d(M K{:h 4(R,P)
‘Ihe vertex P opposite 0 15 the point (a + e ;o +.d) and this vertex is .
. the terminal point .of X+ Y . If the vectors have the same or \Qppos te direc-
) tions the’ E,roof follows 1mediately from the definition of vectpf ad@ition’

. e If° ¥ is the zero vector [0,0] , then ' x.
" . . ) - LI \f} : )
- . 3 . : -t&.b]j {G‘ie‘} = x + Y‘ =“ X“: [a,'b] = [a + O s b‘.f O] .. L ‘:‘ . L]
. . . - o~ . 1 fron 3
. - . : . . 'y ’
 THEOREM 3-10.. 'If .T = [a,b] and T 1is a real nmbex;, then r?.’~ [ra,rb] . -
. N ]
The proof is left as an exercise, ' ‘ ' ) ” :

- THEOREM 3-11. We prove, using components, a theorem learned earlier: Two

non-zero vectors’ ¥ and ¥ 1lie in t_hé same line through the origin,

if and only-if ¥ = r¥ for some resl number T .
R . : . o+

-

. . X N\ - =
proof. If ¥ = [a,b] and ¥ =[ra,rb] , then ¥ and’ ¥ 1ie in the
line ay = bx . Conversely, if Y = [a, b] and if Y. 1lies in ‘the line which
« contains Y , then the components oﬁ g must satisfy tHe equation  ay = bx .

Hence ¥ = [ra,rb] for some real number r .

.
LI

‘ The vector [1,0] is indicated by the letter i and [0,1] by J . The
) i and J vectors could be written as 1 and T vut, in accordance with

CQUmNoN usage, we sh&ll use the .;implex.' nots.tion. They represent the unit

veectors along the horizontal and vertical axes respectively.

)

&

If A= (9‘1!39) , the origif-vector A may bewrit}ten as follows:

.

) + {&1’3‘)} [a ,0] + [O,aEJ = 31[1,0} + ag[Q,l] = el +a .

-

. L]

- A N
Note that ay and a, are the components of. A ; ali and 8.2;}

, the component vectors of 2 . We observe in Figure 3-12 that any origin-vec.tor

are called

[y

can Le written uniquely as the sum of its component vgctors. The magnitude of

.
< £ E

1 o R :

o -
A is a

A
N
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We can form vector descriptio‘hs of lines and thelr subsets using com-

ponents.

+ Example 2,

for AB  where

Solution.
T (1) ¥-

3

I

(2) Thuse

-

» »

A=[3,4] anda B=[-2,3].

o«

Let .F be the origin-vect

rk + (1-r)¥
r{3,4] + (1 2 r)[-2,3]
[3r,4r] + [-2 +
fA-B.=,{P:-1;=
115

-

or

’ 3-‘3rIA
-2 +5r, 3+ r]}).

e &

1

any point P’/on v
",

(Theorem 3-7)

21 .

-

. " . x:
' - - .. - s
. ] ' ' - «, - ="
. - I O a ‘.r J e . '_f . P . B !4. ;
- Y ‘v o. .
~ - ]
I . F o . _' o L}
: -, - - . . ¢
. ~— + b ) [
b ‘ .t Figure 3 15 = F 4 & .
'I‘he ‘use of components legfis to, a simple ari’t‘hmetic of vectors, &s will be
seen in the follcwing secticyzs. ‘ : . SRR
. 1 " ' e - e ‘ '/‘ : ! _
Example 1. Given R < [2,3] eand Y"=“L-l 51 .‘ | ) ‘:.
Fin}« y A _[1& 2] in terms of Y and Y.
4
. B ' [
= ' We must find scalars r and s sucﬁ‘that 7= T[E 3] +s[-1,5] . Hence
. e é -
a!h-EI—IErBr]+[s,553—f2r-5,3r+5s} .
- o s
. Sincg {he components of a gitven origin-vectq_;qare nique, we Pave: .,
e 2r - S:ﬁ 2‘- . *
‘ . . ‘ .
3r + 55 = - . o«
. . o~ ?
‘We find th.qb r =‘}J§. i :jljg ; hénce 1z = E[E 3] « -13-[ -1,51 . )

-

Find the vector representation, in terms of a single parameter,




. - ' , - .
" ¢ mmble 3' Fin:k using conponents, a vector representaticm of X8 where .

A= (S,h) and ‘B =,.(-2,3) | , .o ‘ -
«‘.\ . . ' E . .
- f . . / . . -
»
ation. A = [3,&] and B: [,2,3] ~ Ag in Example 2, any point P on
AR chn be represented by : Lt \ C o~ .
.‘ ) - t
. [ ﬁ {PF_rK+(1-r)§} - .
‘ -~ Hovever e must pla.ce a restriction on ‘'r .g0 that will 11% oLy on ﬁ
‘ f_ . _. This: eond.ition will be met ir 0 <r < 1 Eince.. P A" when’ r.=1 and P'=B .
. vhen Tr=0. - . ‘-, o ," - L .
cte T The. cdmplete solution is'-".' e."- ‘- . 3 v "._ T D
é‘“’vl e ". " ‘ . " o - as . ‘-‘;‘ ":’;‘1 | - : -
S ke /)ﬁ:;PP [—2+5’r’,3+-r],0<i<1~*,_ b .
_E_x___sng__ le b, Find, using Qo&imnents s 8 vectar representation of BA \rhere
A =(3,4) and B = (+2,3). : : "
- - -

€ 4

- Solution. ‘I‘his problem‘differs fm Exa,u:ple 3 in only one respect. We
must now place a restriction on r so that P will lie only on R . This
#+ s condition will be met if r >0 since P'=B when r =0 and P lies Off

o the ray ema.na.ting from B and containing A when r>0., 'I'he ccmplete solu-
St tion is: - .

5r,3+r},r20}. | .

Exa.mple 3. Find the vector representation of the trisection ‘points of
. Ewherex [3,4] and B—[23] -

v - . . . \
~ — . : |
- Solution. Referring to Theorem 3-8,%@ have s
. ) : P LB 4 B .=
' * . : ' T Sm +n +n

* . -

-,

where P Hivides the segment in the ratio: n:m .
. '. . ' ' (
. There are two‘pqis?}ats of trisegtion, one where n:m ='1:2 ; the other where

n:m = 2;:1 . We shall do the first part.

2 1 1& ll
= g[Sg"“] + g['2;3} = g T

G 2[3;’,.14 ;1[-2,3}

. / q §

{
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1.

*

(a)

()

(e)
(a)

(e)

(£)
(g)
(n)y

Find the components 'b;f

| _. \gxercises 3.6
[3,2] + [¥,1] .

[3,-21 + [ty 17 .

45,6}

-4(5,61 ¢

-1[5,6]-.

- [5,6] . ' I

3[4,1) +2(-1,3] . s

3[4, l}’ - 2[-1 31

1 k-

{e) a1 +vy .
(d) (cos 9)1 + (sin 8)s .

fs,-5] , = [-1,6],

(s) 21'+3§ (oS
() K-2E+3t" -
(e) 2X+B) - 3B - ),

Whef,is the x emonent of 1 ? of 3¢

c = [2 3]',

Find the magnitude of the follmdng vectors:

(a) 1_‘+FJ. :
(b) 31 -43. IR

vector ¥ 1s drawn from A= (4,2) to B =

vector P‘ in terms of i and d .
[

P

(5;:;) .

3«

find the .componex;fs\ of K
, (4) 5(R-T) +3(T- n,

(e) 3(X+8 - a)+ear . f)
(£)" 5(3‘ T 3)-3(§+3 75)

Write its origine

6

* ..

Rrpres_s the zero vector O in terms of two distinct non-collinear vectdrs

f a.nd Y lying in the same plane,.

‘ ]

‘e

In terms of i and J , deseribe the vector ;representéd by the arrow

extending from 0O to the midpoint of the segment joining

- (5,8) . | '

In temms of 1 -and | , describe-

. ‘* ) . .
unit vector making an angle of 30° with the x-axis.

(215) and -

[}

M

with the x-axis.

-

(a) the
(b) the unit vector making an angle of -30°
' (e) the unlt vector having the same dire&ion as 41 - 3

‘. ’ -

k]
S

» 0 ’




3-6

9.

12,

13.

Find x and y - 80 that g N i - .
(a) x13,-1] + y{3,3] = 15, 6] C ' : L
) x[3,2] +y(2,3]1 = [1,2] . oo o -

(c) xI[3,2] + yl42, 3] = [5,6] . _ : ' :
(a) x[3,2] + y[6,4) = [- 3,-2] ‘hnfinitely many solutiorfs. why?)

Represent an arbitrary vector [a,b] as a linear combination of

L

(a) [1,0] and [O,1].
(v) [141] amd [-1,1}/

* . . s )
() [ L .,-_1 T_ ’ . B

- Physiéal forces possess both magnitude and direction and therefore may be
represented by vectors. In physics problems it is of teis convenient to
‘use x-components and y-components to represent the horizontol and

vertical components of a force. S <

Suppose a sled is being pulled. along level,ground by a cord making an
angle of 30° with the ground. The tensjion (magnitude of the. pulling i

.~foxce) in the cord is 50, pounds. ¥hat is the component of the force
parallel to ‘the ground; end vhat 1s the component of the force perpen-
diculer to the ground?

— v —— s t——

(Hint With the force vectorbemanating
from the origin, the norifontal vector
will be [T cos 30 ,0] and the

vertical vector will be [0, T sin 3001 )

30 ‘!;_
T

Two forces act.simuitaneously at the same point, The first has a

magnitude of 20 pounds, and direction 370 above the horfzontal and
towerd the right. The other force has a magnitude of 30 pounds and
direction 30° below the ‘horizontal and towsrd the right. Find the

vector which represents the resultant of these -two forces. ’ -

Refer to tﬁe forces of Exercise 12.

{a) At what angle must the second foree act if the xesultant acts
horizontally towsrd tke right?

‘¥
» .

{b) At what angle must the second forece act if the resultant acts - .
vertically'?

£

124
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~ S 3,

-

Supﬁose‘ three for¢es act simulﬁaneously at the ‘same point. « (It csn be
seen from th_e: commutative and associative préperties. Kf;a:dd'ition for

vectorgs that there is but one resultarnt for all ‘three, no matter which
.two are taken first.) Find the resultant of these three forces: 20 "-

.

pounds gcting due west; 30‘ pounds adting -noxtthwest, and L0 pound§

[

acting due south. - ‘. T .o
‘ -

If two forces have the same ma_gfxitﬁde but act in %pposite directions,
they are said to be in.equilibrium and each is called the eguilibrant‘
* of the other. ) s

(a) Find the magnitude and direction of the equilibrant of the :
fesultant of two forces, one pulling due north with a megnitude
of /20 pounds and the other pulling southeast with a ma.gnitudg
of 30 pounds .

(b) If a third force of 10" pounds acting due east is added, find the
force which will pmvide equilibrium for the whole system.

A picture weighirxg 4en pounds is suspended evenly by.a w.Lre going over . -
& hook on the wall If the two ends of the wire mmske an angle éf  14Q°
at the hook, find the tension in the wire‘ (8ee Exercise 11 for the use ™

of "tension",)

Prove 'I‘heo:‘ems 3-1, 3-2, and 3-6 using component{ -

Prmre Theorem 3-10.

é . .
Find vector representatiéns, in terms of' 8 single parameter for the sets

described below: .= ) S

(a) AP where A = [2,3] and B = [-h,5]

(b) X¥ where R = [1,3] and B'= [3;9]

(¢) ¥B where X = [4,-7] and 3B = (4,2]

(d) ¥B* where R -1([2] and B - [3]

(e) AEB where KR= [-3,2] and B = [1;-7]

(f) AB where X - [1] anda B = (ot o

(g) ﬁ where E=1[34] and 8= [- ."-;1‘3}

(h) KB where X =_[1,-2] and B - [-3,0]

(1) K where X - [2] and ¥ = 1] | N -

(3) A8 where X - [3,k] and ’E = [-2,3] !

() BA where X - [3,4] and %8 = [-2,3]

(1) B2 where K= [1] anda B - [2]

(m) ‘The ray opposite to AB where X = (3, 1&] and B —'[-?,3} *
(n) The interior of semment AB where A = [-3,2] and B - [1 -2]

ot
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3"6. P ‘ ' . : x '~ ( —

- . -

T “20. Pind the vector repre%entations of the mdpoints and triaection POintS of
' . the follmd.ng line segments-

‘(a) AB where AN[OQ] and B=[612]\ '-_ : T v
(b) KB vhere A = [‘3,2] and B = [10,+11]
(¢) AB where A = [elg,e‘] and B = [bl,b ¥

21, Find. the vector representations of the points which divide the direeted

segment (P,Q) in the ratio % where:

)

(a)‘ pk=[ne],q_(1n1 §=§ / .
(b)'P=[u1_,q;-[n}._,gn§.§;l3; L 1‘

L(e) P-l-3,-2], Q= B2, e I-a ‘ '
(a) Pt =~[".‘1,u] y Q= [9,-‘5]}ana z= % N
() 7= 3,3, a= gy, ), ant .2 P
(£} P=[41, Q='f11] , and is'.;.g_




, 3-'1;-, Irmer Product .

Our algebra of vectors does not yet include multiplication of one vector:
" by aﬁ)ther .

In order to make. &.definit‘ion which will have significa.nt
consequences, we invéstigate the angle between two vectors.

c e

DEFINITION. ILet X and Y be any two non-zero vectors.

- -

Then by the angle between i. and Y we mean the angle
- - - .

.whose sides contain X and Y . This angle has a unique

" and 180° (inclusive).

Y 4 | ‘

degree measure between o°

Figure 3-16

Let © denote the angle between T and Y. The law of cosinf's,

applied to triangle OXY , enables us to write

- | ! )
. @(x,y))c - [ﬂ? + l?le - 2[R ¥ cos 6 . ﬁ .
|X||Y| cos & has significant physical applications which lead us_to

a useful vector conc opt. One such application deals with the work done in

applying & force through a giv;etx distance.

The term

Since we must consider the direc-

tion and magnitudg of' both the force which is applied and the motion which

talfes place, it is customsry to represent them by vectors
= |5] 1is the distance.

¥ and B R where




(. | ! Iiigui'e 3-17 ' =
. - -

In Figure 3- 17, an object at 0 is moved & dista.nce s by.a force ‘F
‘mis force is applied to the ob.ject elong a straight line and in the same °
direction as that line so thAt all of the force acts in the direction of - .
motion. PR

On the other hand, if the force is applied at an angle 6, as shown in
Figure 3-18, only that vector cqn:p?nent of the force, i’. whicki produces

’ ! : ) v . § . : .
the motion is effective in, performing the work done. - _ o
-
X
3 ' . : '
L - -
’ Figure 3-18 . : .

In Figure 3-18, 4(0,8) = = [‘s‘]

- )
-~ ' * Work . ifxls = lﬂs cos O = lﬂ |§t cos O . "\
- " - . s .
DEFINITION. ILet X end Y be any non-z8ro vectors. Then
- - N
the inner product, X -Y , of the two vectors is the real
number
- el
|X| Y| cos 6 '
where - |X] 1is the magnitude of X, Y[ is the megnitude
of Y , and 6 1s the angle between, X and Y . If | '
- .
either X or Y is the zero vector, X .Y 1s defined to * .
be zero. } . '
- The inner product XY 1is usually read "vector X dot ‘vegtor Y' and.

{s therefore sometimes called the "dot product“.. Notice that the inner
product is an operation that. assigns to each pair of vectors a real number
rather than a vector. The operation is obviocusly coxmnut.ative.




In view of the above definitiqn, ork = ¥- 8. Also §-%-= [£]°

t-%=2%-. ’E ’ . 3{ N ) ; e
H . - \ \A ‘ ‘ ’ t . 4 .
o Ex_a.mm Fvaluste X.¥ if [x[ :&Z \1"* 3 end (a.) =0,
ko =i, () e, () B N |
. » — L]
. . o\ -
Solution. Y 5
. . | TR .
(a) X -Y 2. 3 cos 0° +3:.1=06 " \? N
(b). i . ? = 2.- 3 c'os ks = 2‘ N 3 . g ’; 3,/2. \.‘\\ - ]
(C)'-X‘G-Y“’203. QQ-S g)o :2-3 gQ:O ( \
"(4) XY= 23c08180=23(l) ‘x
A}
The inner product has ma.n.y a.pplications. One of the,ée is.a téest for
. perpendicularityf ) 4 ' .
- 5

L
o §

monm 3-12, If x and Y are non-zero vectors, then they aye perpen-

dicular if and only if P )
X-¥T-0. '
Proof. According to the definition of .inner product : o 1R
[ o . - ey -l - . . '! ‘:f \
_ X-Y=X|-|T) cos 6. I

This product of resl numbers is zeyo if and only 1f one of its factors is

. - - . -l
z8ro. Since X ’é{nd Y are non-zero vectors, thie numbers |X| and [Y{ are
n:t zero. Therefore the product is zero if and only if cos 9 = 0 , which is

N\
the case if and only 1if X and Y are perpendicular
The following theorem supplies a useful formula for the inner pmduct of
vectors. .. : g ’w
' . L = - - ’ :
- THBEOREM 3-13. -Iff X = [xl,xel and Y = [yl,yel , } .
then ’ —_
wln -l

. = + o,
XX =xy) + X9,




‘" * } e
| " Proof. From the law of cosines and the distance formula e can ncvw -
; . write (see Figure 3-16) Co s
: |
| e G 2 -2 |
L . ' T T: IR] ¥ cos.6 = 2] hs |91 éﬁ(xfya_
| = ’é{"l '”‘22 * Ylg * Yee - (% - yl)e - (x5 - "2)‘\2]
: | 1 \ R R ) ) |
A ) = 5(2"1”1 ¥ 2xy) = xyy ¢ "_2’2 .- ‘ \
| ) Example 1. If Y— [8 -6] amd. Y= [3.,’43 o9 shov that X and. f
o perpendicula.r. ‘
.
golution, X+ Y=8 S+ ()b =24 - 2 =0 . \
Since Y nﬁ& Y are non-Zero vectors:' Theorem 3-1.2 shm that they are :
perpendiculs
Example 2. Find the angle between the vectors X = [4,3] ‘and p: 1 [-Le].r
. ‘ V \.
o A \
\
’ |
E "
Figure 3-19 , \
s -, _ N
] : .
* solution, | B-B=|%[B cos 8 . |
L o8- )2+ (3)(2) =-2 : \
N\ I'Kl =5, l§l=2¥§ . . ~ \
' : [ |
Qf. cos '9. = z E = -2 = - g ~ -'nlhl_ - %
BBl 107% | |
N -
. - g =98 o | | 1
« . \
We shall find further application for the formula - |
| -3 o
’ ~ cos @ = . -
1A 18] -

s .

\ . R . . 124 ‘
e Y . ™ 130
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- . ‘ Lo : NN )
The Anglé Between Two Lines. An application of this formula ¢an be made

to find the angles formed by two lines with equations in rectangular form. .

' Suppose the lines are Ll and Le with respeCtive equihions

-

alebly-&cl:() and a.2x+b2y+c:2_0. i

T x e . " -

In Chapter 2 we learned that the respecti*ve norm&lﬁ f\l‘ a.nd N, "heye
_ direction numbers (a.l,b ) and (ag,b ) . We my take these as- ‘wector com-
ponents of vectors along N, and Ng . From the diegram, /8 and L@ have

equal measure sincé each is the complement of Za ; hence, ve may f1hd. © F

- the measure of the angle between Ll and L2 by finding P the measure of
the angle between their normals. Therefore A

[ay,0; ]e [ae,bel 8,8, + b;b,

{[al’b 11 Hap,e,l ) JQlE + blér {gee +1b.°

This is the same formula we found in Chapter 2.by another approach. -

Examplé. Find the angles f‘o‘rmed by the lines with equations |

3 + by +5 =0 and 5x + 12y + 9 =
| q

%

SélutAion. Direction numbers for the normals to these lines are (3,4).

xan'd (5,122 "; therefore,

cos 8 ‘;- {3!_& }[5112} = 15 + 48 A 6.‘5 - = % ,
p - 13,415,121 SE 02 TR 513
cos 8 ® 969 , | ana I U

. . X
. . \

The angles formed have measure 14° and 166° .

' =131
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1.

2.

4

3.

-

L4

.)}.

6-

7.

(b)) 1

' S Exercises 3-
\ ———

Ir 1 =[1,0] end ) [0,1] , find | :
(a) 4.3 . (e) (i+3) (-9 I
() 5.1 ' (£) (2 +33)+ (b -53)

"(c) 1-1 |  (8) (at +b3)c{et +ad) .

(@) .3 . . ! - .

2 A-ts,-—sl,n=[2i1,C=[h-31,ﬁnd L
(a) 2.8 7 . () B+ S - -

o ke (&) (E+5D) (B~

() R-B+d - () B+B-0)-(F-2+7)

(@) 8- K+280) . - (1) (&R -3+ 0) - OR - 2L+ 1)

- .

() R+B).-&A-%) - () R-R+8.5+C.C

Find the angle between X end ¥ if [f[ =e, ﬁ?[ =3
(&) o L (o) b |

(£) 5 : . h :
(g) 6 “ |
() -6

a4
w2}

dand is

(c) -2
(&) 3

Given
R

(a) =41 - 33, rind N
312

=31 +L4) , determine w
is

(b) B =121 + 5) , find

. .
-~
-l

o
If so that Y 1is perpendicular to X ,
- %

if

(a)
(v)
()
(d)

=<| >

wi + L)
Wt - b
bi + wj o | | .
wi -~ 3]

(e) \Find an origin-vector in eomponent form which is perpendicular to

X eand four times as long. (two answers)

21 - J and -}? 31 + 63 as sides of AAOB ;

Given A what kind of
-l
a8 tritmgle 1§ AAOB ¢ PFind the third side c: in ‘terms of A and B .

Find T , the origin-vector of T , in terms of its unit vectors.

-h ¢
let A 21 - 33, B= -21'+J . Find )
(a)« the angle between A and B.

the work done by A ’ considered as & fo{'ce vector, in moving a

(b)
particle from the origin to s = (2,0} along the x-axis.

126 132




. » ' ) , - _ 3-8
| 8. A sled is pulled a distance of‘ 8 ft. by a.force of f lbs., vhere

' F represents the force which mkes ‘an angle of @ with the horizontal.
Find the work ddge if

s -

(a) s =100 Bt., £ =10 Ibs., 6 = 20° .
(b) s = 1000 ft., £ = 10 lbs., g =30°.

I3

9. 1In Problem (8), how far can the sled be dragged if tl}e mumber aof.avail-
a\ble foot pounds of work is 1000 and if :

‘(a) f = 100 1bs., @ = 20° . : -
(6) £ =100 1bs., 6 = 8° . ' |
10. et A= (cos )i + (sin 8)) and - .
' B = (cos &)1 + (sin &) .,

Draw these vectors in the xy-plshe.

(a) Find A . B, |A],.[B]
\b) Use those results to prove that
cos(® - @) = cod ¢ cos 6 + sin ® sin @ .

11. Prove: -k<ﬁ‘l‘

~—

p . 'y
12, Comment on the following. there is an associative law for vector addi- . -
tion: (A +B) + T=4+ (B + C) . Therefore, there may be an associa- '
tive law for inner products: - (B C) (A B) ) '
A _ :

3.8, Llaws and Applications’ of the Inner (Dot) Product. | R

—

A useful fact about inndr products is that they have some of the
algebraic. properties of products of numbars. The following theorem g}v.eé two

e~ . .
such properties. \ : -—— .. .
'HEOREM 3-14. If X, Y, Z are any vectorsy then ’ ’
(a) X.(Y+72) .—_-'f._‘x’+x Z . ‘
(0) (&) T =t(®- 1) = @ . (D) -
Part (b) states "a scalar multiple of a dot product.can be
attached to either vector factor." - . .

‘(
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e A,
Pmof. Let. = [xl,xg} Y = [yl,y2] s 2 = [zl,zel Th.en * o
B . BN
(a)' X (ff"*-j = [xl,le 2z, , ¥, * 22} | S '
el 21) txlrytm) |
- | | alke LA TR - - s '“‘2’2 )
. ‘ = f- ff‘x'.
® (&) -7 - [til}txe] + lypvp] e
| | - =ty ARy, | S
- -;; } | a . = t(xlyl‘ A—,,xz-ye) " | ' . | ‘, |
. :;',‘.' . . - t("x"-f). . » . .
,coronary, (aY + bz) (x . r) + b(x . z) o - .

Tie proofs of this eorollary and the last part of Theorem 3-14 are left

as. exercises.

- We_‘my now use the inner product to prove theorems in gecmetry which -
-involve perpendicularity. e . ‘ -

- : . . *

M 1. Show that the diegonals of & rhombus ere perpendicular. "

Solution. Choose : the origin as one yertex of the Thombus. The two
' adjacent sides can be represented by the vectors 2 and B with ff\.} = lff

- -

Figure 3-20

Thus one diagonal is represented by 2 + T and the other diesgonal is
- < .
parallel to A - B . To test for perpendicularity we calcula®s the lnner

Y

product of these two vectors, using Theorem 3-1k.

- 13_4 128 :




» PN ' )
o

- "

3-8

- B EB-F+D) T (R+E)F

. - - - - o
. | ' <R A+B.A-A.-B2B:B
.“ ] . v “ . N 2 2
| | N T
- But |A| = |B] , so that the inner prodict,is zeyo and hence the diagomals
are perpendicular, ' o E\

te
. -~

- 3

Example 2.

Prove that the altitudes of a trianglé wmrrent.

- " C

Figure 3-21

Proof. Refer to Figure 3-21: IlLet EE and TF be altitudes of AABC . .

. _— N .
Then BE and CF must intersect at some point H .

AH intersects BC at
some point D, We must prove Elﬁﬁ.
s ' ~
(1) - (a-¢c)=D-a-b.c=0; (Wy?)
thus %'“;g; —
(2) Similarly, ¢-(b-a)=c. 5 -C'8=0;"
4 . thus -c.-g=-c?'3 . ’ v
f o, ‘ B 8
-l e il i
(3) bPra=c-a. (Wny?) ‘ )
(1}) -C-‘;--S'-;SOO 9 L

(5) (¢-%).a=0 and 3] (c-7). - | (,

;

A : -» ’ :
(6) Jence AD | BC and the three altitudes are concurrent.

¢

The inner product can be used to derive another result, Let

IS

-l e .
—- - yr - . o
X = ‘[xl,xel be & non-zero vector. Then X' z [ xe,xl] is &lso a ngn-zero

#

vector and we have _

IToxt Provided by ERI
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’ -
| -
r [
l

- XX = Dol [xgym ] = -xpkp 8% =0 - o
‘ ’

[y ! -
Hence by Theorem 3-12, X and f& are perpendicular and the angle between

-l : .
the vectors is 90° . Now let Y = [yl,y2] be any non-zero wector. We p\ow
calgulate Y. - ’

Y

.‘y

) | Xn . . -
(-)(‘ztsx‘) . ) ( ‘ .

Figure 3-22° . . . o

To Yo s0 we must détermine the angle between the vectors -f' and ? . “f‘he
‘rdlationship af this angle to angle 0 15 not always the same. In
FPigure 3-22 the s;ggle g' between X' and Y is 360 - (90° + 8) .
"I ¥ were near the positive side of the y-axls, the angle 6 would be
90° + 6 . If A werk between X and X', the angle §' would be

' - )
90" ~ 8 . JIf Y were near the negative side of the y-axis, the angle
would be 8 - 90° . Theréfore_; we have

cos [360° - (907 + 6)1,) o 5
» . N €os (900 + 9 ) ;
» . cos 8! =. cos (900 - 9) , 1 = - sin 6.
. S ‘ 4 .
] orcos { & - %), '
Therefore, in any case, since X! = f-xe,xl] P "
%7 v = %3 RN il .
XY= [oxpxg] s Lyy,yp) = %y, - Xy = X}[Y] dos &' - - |X||Y] sin €.
- \ ‘e ¢
}l 136 [ N . i
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But from the figure, we see that rﬂ sin @ 1is the length of the altitude h
dra\m from X to line ?).Y— in AOXY. Thus the area K ‘of  ADXY. is given by

non-th-vectors -f and ? to point.'s X end Y .respectively. Let
the- perpendicular from X to OY meet OY in point P as indicateddm ‘
Figure 3-2k, Then the vectors m and n correéponding to OP and ﬁ are
called the camponent vectors of * X vith reSpect to Y . This ideg is not

restricted to origin-vectors,

As before,. we have the .g'gfgonent vectors ai = A ,", and ,bj =B ., _
| : . _ | - | e,
We now wigh to extend this concept of clomponent veetors; Consider any -

‘ . ! - - - ‘o ‘ ) . e l - ‘ . ] -
.:. ' : .' '.~,\ ’ ‘ K = Fé-iY'h L . . .

Mr, gince h'= [X| sino , S o * ‘ .

. oK §|ﬂlx[ sin 6 = —[xlye - x2y1| . ;

_ w ‘ A | |
' 3- 9, " Resolution of Vectors. . 1 !f" -
il In,the first discussion- Bn vector cqmponents (Section 3-6), it vas noted
that the vectqr x = [a,b] had a - as its x-component and- b as its y-com-
ponent . . ]
a0 -
L]

A - . . T - .
T : - ) gure 3-23 g o .

Aﬂ'

& -



. : R
- This extension of the concept of ccmponents of vectors ds ofter; helpful
in physical and geometrte applications, where these ideas are d.iscussed in

"terms of the resolution of a vector into vector components. In the above
s discussion, we, say that we resolve X -into vector components .m and‘ n -

respectively parallel and perpendicular to Y. 2 | C ]

ling.

. From the defi.nition of the inner produc't. of two vectors X and Y s wE

) have .- R . s
) -ty ~ . —— . \ :
(1) ,the component of X in.the direction of Y % :
) . - 7

fcos.B:z(—_'_—}-g:x-'-—_}-i— whdfre
: 'O ]

' : ! . «

: -!—Y—l represents the unit vector alox;g the' Y direction. ‘ T
. Y ~ ‘ - -

' {2) the ccmpgnent of Y 1in the direction of -}.(..,
. .

i, anliin . !
s : ‘ ‘ [;
' ' Ycoseeu (Y'-é-' where ,
. | ® W
. —é— represents the unit vector along the X direction. ‘ )
N E c
- . . <8 ¢
L] .
( '
'-" . Exércises 3-8 and 3-9 , ‘ : A,~
* o . ' . . Q ' .t
L. Verify Thebrem 3-14 (b) for the vectors _
e ’ .' P ‘ - . . *
‘ I X=1[e,4], Y=1[-1,-3] and t =5. .
. 2. If %= [x,,x,] and Y = [yl,'ye'] , prove that (tX). ¥ =X+ (tY), for
' ’ * - ‘ r
a}w scalar t ..
3. Prove the corollary of Theorem 3-1k4. 4
. L] ! Py -

k., (&) ‘Supply the reasons for each step Of the proof of the theorm in
Example 1 following Theorem 3-Ih, .
(b) same as (a) for the theorem in ExampTe—2,

5. Find the ared of the triangle determined by A = [3,-1] and B ®(2,6]
/ and check your result by any method. : ) .
6. Given A-21- 35 and 3 = «21 +§ . Find the component of
- (a) K upon E ' . ‘- b4 ;)n . -
’ (o) B upen 'y
/

' I3

\ | .i:3%3 ﬁ‘




T ’ B s 5? intersect

A_ﬁ intersect BC at M

.respectively at P, Q, R .

Given!\nector representing 4 wind of 30 mph. from the southwest,

Locate this vector in a coordinate plane where the pqsitive side of the

' y-axis 615 consi,dered to lie in the north direc‘bion‘ Reselve this vector

into its m a.nd n components (as described in Figure 3-23) with A
respegt to: : , ¢ ‘

(a) the x and y axes. ‘
(b) . the line 6 = 15° : ' \
(c) the vector A = [10,15] .

v ' £,

-

Challenge Problems

(Ceva's Theorem) Let P, be any poimt not om triangle ABC . let
. (™ . ( «

BC s AC ’ AB respectively
at Q, R, S . Show that

déA,S) .nglQ; . d?Czﬂg Sy
d(8,B] a(Q,C] d(R,A

In-triangle ABC , let
CD | AB ,end %et P be
any peint on D . Let

and BP intersect AC
at N . Show tha,t\
/CIN = fen - )

[

. é . .
(Hint. Take D to be.%b .) ;

(Menelsus' Theorem) Let f
be any line which.does not
pass through any vertex of
triangle ABC . Let £ |

. A Gre—p W<
intersect AB , AC , »

Sh(;@' that

th),ch). £ =1 .
aq,c d(R,B d(P,A) ' L, o '

- u ' - Y . c £ -




[ . hl ' - ¥

L (a) Provealgebmicauy L .o | . S

("13'1 + "eya) < (xl * % )(:rl + ¥, %) .

mm /}s is a case of Schwarz's 1nequality, another form . Qf

vhichis S . . ) N

Lo SR - - - 2y 2 2 2
(xv, + x2y2 + x3y3)" < (x4 & + x0T r ¥y 4 ygT) .
(b) Write: these in vector notatidn.
(c) What gecmetric interpretation can be made for the case in, which the’

left and right members are equal. ' . !
. S

P

3-10. Summary and Reviev Exercises.

The chapter  Just concluded d.ealt with vectors and ‘their appliea.tions.
After reviewing some basic ideas about dimcted line segments (objects with
both direction and magnitude) ; & vector was defined as an. infinite set of

equivalent direeted line segments, 'me origin-Principle allcmed us to relate -

& vector to any point in space as an origin. ' We found it useful to select the
. orlgin-vector, that member of each set with its inltial point at the origin,”
as tfe simplest representati\fe of a vector. The unit vector and zef_o vector

were defined and the term scalar intmduied. o I

‘Ihe next step in setting up a.n algebra of vectors was t&ken when the
equality of vectors was defined 1n accordance with common praetice. . ‘.Ihe
operations of addition and subtraction of vectors and the product of a vector’
by a scalar were defined. The last concept made it possible'to state that two
vectors are parmllel if and }only if .one is a scalar multiple of the other,
The Qrigin-PI-inciple related operations with veétors o the correé‘pondin'g

f

operations with their respective origin-vectors.
-

It was then préved that the commutative and associative laws hold for
the addition of vectors. Scalar multiplication satisfied the associative law
- (rs)?P = :(s?) and the distributive laws P +Q) =.7P + rQ and
(r + s)?’% P + S.E . The zero vector O has the usual properties of the
additive identity; the addit;ive inversé, - P, is defined by 7+ (‘_i:‘) _

The definition of a linear combination of vectors ma..de 1t possible to
préve some basic theorems about vectors. Theoren 3-5 stated that in a plane

. any vector can be expressed in terms of any o ﬁon-parallel and hon-zero'
ve_ctors.v After the study of vector components, it was pointed out that any

vector can be represented as a linear combination of the unit vectors

134 -

140 -

-




e o

. | | - | , P 3-10

1 =[1,0] and J = [0,1] , Theorem 3-7 made it possible to determine if a.
point P 1lies on the line passing through the terminal points of tﬁ) dlstinct
j,vectors A and B which do not lie on the same line by proving that

P - (L% r)A + rB . Sets of poihts on a given line could now be given a‘vecii
characterization. Theorem 3 8 offe\ a second method for dividing a line
segment in a given ratio. e

Vector components ﬁléy a basic role in the‘application of vectors. The
.operatiofis on vectors were defined in terms of these components. - If X = [a,b],"
FS -~ . ’ - -

Y =[c,a] , then X+Y=1[a+c,b+d] and rX = [ra,rb] .

The inner product of two vectors was defined by X.Y-= rl |-| cos @
where /@ is the angle between the two vectors, with 0 < 6 <. Itwas
then proved that if X = [x,x;] and Y = [yl,yg] , then XY = + XY,

.

A physical applicatiOn was’ presented i% the concept of work in physics. An
importa.nt theorem is that two vectors, x and Y , 8re perpendicular if and -
only if,. ‘}?- Y = 0,« The inner product has the following properties:

(1) X- (?;‘E) -X-Y+X-%.

(?) (t‘) <Y =X (tY) =.'t(-X~--Yj where t 1s a scalar.
(3) Xe (aY + bE) = a(-}z- ﬂ + b(')?-.f) where a and b are scalars.

The inner product has many applications in geometry. We showed how it could
" be used to determine an angle between vectors, to find the area of the triangle
determined by two vectors with a commorn initial point, to prove that the diago-
nals of a rhombus are perpendicular, and to qhow that the altitudes of a tri-
angle are concurrent, 'I‘he cha.pter concluded #ith a discussion of the resolu-,

tion of vectors. This concept has considerable appliecation in physical problems.

2

In the following chapter which deale with methods of proof in analytic
geometry, there will be more proofs applying vector methods to geometric
problems, In Chapter 8 there will be a brief introduction to vectors in a-

three dimensional space.
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Review Exercises -

¥ A=103,-5], 8=10-1,6] , C=1[2,3], find X in component form such
that Ve - |

ol

(4) A+X=B+C-X
, (e} 3(X+3B)=2X-C)
(£) T+2X+B) +3(X+3B) =0

(a) 'E+'§7='_5'+'}?

(b) "R + 38 = hc“.i- 5%
(¢) 2F-B) =3(CT- %)
Prove Theorem 3-3.

Prove Theorem 3.k, ’ '

Let A= (2,31 ,8=103,-2] , C =[-1,3] . Find in component form, the
single vector equal to : '
-~ Y -'- -
(ay A+ 3B -C
(b) A-28+3C

s - - !
() 2(F+8)-3(E-7)

Use ‘the values of A, B, C:, as in Exercise 4, and find X ,in component

(@) s(F-D+3E-BD -
(e) 3(A+B-T)+2A-B+7)
(£) 5(C-A+B)-'3(B+K-0)

form so that

. (d) ;+2§=.§+Eali
sX (e) 3(X+B)=2X-7)

C + '
() 2(F-B) - 3(CT- %) () X+2(+H) +3(X+B) = 0
Use t;he values Qf A, § , T, as in Eécercige 4, and find the numerical
.value of ‘ ‘ - . '
(8) &3 {£) (2B + 30)- (2B - 30) -
(v) 28.38 (8) (3h +5B). (38 - 20)
(c) 3K (B+7T) (h) (BE+B-D).(B-F+7)
(a) 2B (3A + 20) (1) (2R - 3B +« 4C). (58 - 2C + 4B)
(e (R+B).(X-3) (3) ReA+B.B+CT-C
Use the values of A , B, C, as in Exercise 4, and fir-xd the numerical
values of o )
(a) [&] + [B] (h) |RI® - [3)° ,,
(b) |2A] + |G| (1) (A% + |B7 + [T
(c) 2[i] + 3[3] (3) |2A1% + |3B]% + [30)°
(a) |I38] - |ua] (k) |2 + 3B + 4C)°
() |F-3 (1) [A-8°
(£) |2k + 30 (m) 2]& + 3[§I7 + 407
. - . -0 Ll 2
() |3 - ¥A| (n) R + 2(R][B] + |B]

5142
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If {=[1,0] and J = [0,1] , we may express the vectors of Exercise 4
thus: A = 21 + 33, B = -2, Te -1+ 33 « In each part of Exercise
L, restate the original problem in terms of 1 and J i then, carry out

your computations and express your results in temms of these eomponents.

(Refer to Exercises 8 and 4 above.) Restate, in each part of Exercise 5,
the problem and tie solution in terms of 1 and J components.,

(Refer to Exercises 8 and 4 above.) Restate, in each part of Exercise 6,
the problem and the solution in terms of 1 and J componerts,

Given A = (4,1), B=(2,5), C=(-2,3), and D = (0,-4) .

(a) Find the angle measure of [ABC , [Bcn /cDA , and [mua ; check

your results, . <
. . . @

(b) Using O as the origin, find the areas of ADAB , AOBC , and
MOAC . ' '

(c) Use the, results from part (b) to find the area of ' AABC .
Try to develop, with the methods of this‘chapter,.a formula for the area
Of AABC , where A = (aj,8,), B = (b,84) , C = (c;,c,) .

Find the area of the parallelogram in which 04 ahd‘ OB ‘are adjacent

sides., Can &Ou a>ply these results to an earlier exercise in this set?

Find the vector representation of an exterior point of division which

divides the directed segment (R,S) in the ratio where:

a
b : .
(3) 'R = [2,-1] 3 g = [-113} ’ and _%‘. = -2 - “

« * -

(b) %]‘;g:[E];md%:% ' '

'-~'(c) "'ﬁ Y 12,3,1] , 8 = [1,-2,4] , and %: -3

() R=1[-9,71, §=1[3,-2] , and

oo
It

-~ 1

Wik

Given the triangle ABC with X = 1{2,3] , = [-1,2] , ana & = [1,4].

(a) Describe the triangular regﬁon, its interior, and the tri&ngla itself,
using these vectors and two scalars.

(b) Show that [1,3] 1s a vector whose‘terminél point is an interior

‘ point of the, triangle. ) )

(¢) Show that [1,1] 1s & vector whose terminal point is an exterior
point of the triangle.

~ *(d) sShow that the segment Joining the points described in (b) ang (c)

iptersects the triangle.

f - ] Lo
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# 16. Consider the convex quadrilateral ABCD “with X-= [2,3] , §=[-1,2] ,

i

T =-[1,4], ana B = [2,4] K.: Find an expression for the polygonasl region

| ABCD using these vectors and three scalars. : /,/
% 17. Given the four vectors X, ¥, T, and $ , whose terminal points l'zre"not

"~ coplanar, find an expression fgr the. tetr&hedral region ABCD in terms of

these vectors and t.hree scalars. R ) s ¢
18. Find the measure of the angles famed by the {ntersection of the 1ines

(a) 2x + 3y -8 =0 and 3x -2y +k =0. . :

(b) 5 +y=-2=0 and'2x‘-y+6=0.' A ‘

(¢} x+y+3=0 and : o !
-(d)x+2y=0 and x = U4 ’ R -

19. Points A = (1,0) , B = (5,-2) , and C = (3,4) are the vert.iées of a

triangle. Find the measure of each angle of :)ABC . “"\;7/ S _‘4
20. Given points‘ = (-3,-8) , Q= (lk 9) , R = (b, 9) , and S# (- 3,\2)
Find the measure’ of “each angle of quadrilateral PQRS , and name the< -
figure. © o | j RS
. - / e
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Chapter L
- . —w= PROOFS Brnmﬂ'xcmmons

?

- 4-1. Introduction.
One of the satisfsctions we'hope you vill gain from ynur study of
- analytic geometry 1s the realization that you Wjve some very powerful tools
- - for solving many seemingly difficult or inq_)osaible‘ problems. We can demons
strate this, even so‘early in. om,mrk,wving t{x’e"simplicity and
‘directness of analytic proofs for some theorems from plhne geometry and
trigonometry. You will recall many of these theorems, and you also may
reca.ll some -of the struggles which resulted from using synthetic methods on
these problemé* . . ‘
By increaaing the number of methods avallable to solve prohlema, we o
create another problem—-the uncerta.inty as to which methoed to use in a given '
situation. We shall sometimef ask you to ‘use & pa.rticulsr method so that you
may develop competence and confidence in 1ts use. A tennis player may, in
order to strengthen his backhand, be encouraged to use it temporarily more
than he would in normal play. Your uncerf.a.inty and ‘discomfort with & new
method will last only until you have mastereé it. You should understand
) also that even & competent mathematician may start with one metkod and o '
discover later that it is not as convenient as'another method. As you stuéy
© the examples in this chapter, you should watch for clues to the reasons for
choosing one method rather than a.nother. Careful observat\ion at- this point
will smpoth the way as you proceed. . ‘

\ Foryt_he purposes of tl}is chapter we assume that you know the kinds and
basic pmper’;.i"és of common geometric figures and that diagonals, mediens, and

’ ;he like, have been defined. These items, as well as the theorems to-be

¢ \éc,usseé, may be reviewed in SMSG Geometry,’ Intermédiate Mathematics, or

d
pbige equivalent source. T,
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-2, ‘Proofs Using éectgngular Coordinates.

Let us now piﬁve some géamet::ic theorems in ‘recta.néu.la.r coordinates.,

_ e - .

_E_:tpaﬂp_lg 1. Prove: The median to the base of an isosceles triangle 1§
perpendicular to the base. We might y ) | _
finﬁ the triangle placed in relation = = : - )
to the coordinate axes, as in Figure ' ¢ (e,f) : - \
4-1, with AC T BC and with D the
midpoint of B . From an analytic . ,
point of view, to prove CD | AB we .
mist show that the product of the
slope of AB and the slope of CD
is -1. o -

Ala,b)

Figurehl .

‘ .
In order to ensure that the triangle is a general one we might select
coordinates as follows' A__ (a,%) , B = (c,d) , C = (e,£)". Tt follqws,that

midpoint D = (==, L - 9 .

We apply the distance formula t¢ obtain

. By hypothesis d(A,C) = d(B,C) .

.\/(e. - e)2 + (b - f')2 =,/(c; - e)2 + (a - f‘)2

e® - ce + e° 4 a° - 2af + £° , or

aE_ 23e+e2+b2- ébf.+ f'2

&': (‘ «
« o ¥ ’
(1) 8% - 2se + b2 - 2bf < ¢ - Zce + d° - 2af .
S b+d-2of
. _ 5 -
We -next calculate slop‘es. "I'he sl‘ope of - CD 1is PETEra—
. — ~ ' e
and the slope of AB is 2 - g .
The product of the two slopes 1is N
b + bd - AF - bd - 4> + 24f ° b° - Zof - d° + 2af
a2 te BC - lae - ac - c2 + 2ce 8.2 - Zae - c2 + 2ce3




' - . . . ' -
-

Equation (1) eaniqe written as
. <«

(2) : e? -‘Eae - Eg + 2ce = -b° + Ebf & d? - 2af . -
(¢

’.'Subgtituting the right member of (2) into the denominator of the product of
the slopes, we obtain

- b2 - e - a% 4 2af _
b + 2of + a° - 2af

-1 ; . ; -

hence, the theorem is proe7d ‘ B _ P
It would be discouraging indeed 1f all of our coordinate proofs involved .

as much algebraic manipulation as exhibited in this example, - Fortunately, -

this is not the. ease, and you may already see what can be done to simplify
thegalgebra. It was not necessary to choose the coordinates as we d4id.

The propef%iee of geometrie figures depend upon the relations of the
parts and not upen the position of the flgure as a whole. Therefore, in our’
example, since only the triangle and not its location is specified we could
- Just as .well selecp a coordinate system '
‘ .}n which A is 4origin and B 1ies
Jorf the positive side of the x-axis.

This situation is illustrated in Figure
N#-2. Ve now may have the following |

' coordinates for the points: = (0,0),
B = (s,0) , C= (b,c) ,n-(E,o) .

Note that geyeral of the ¢oordinates

are zero. This is ihe feature ghich
simplifies the Rlgebra in our theorems,
and this desirable goal provides us with'

-

“a general gutde in choosing coordinate o - ,
aiEQ\for all our problems. Ty R

In actual practice we are mone )
likely to make a drawing with the axes ' C Ta ! -
oriented as in Figure 4-3. This leads :

us to consider two methods of relating
a ghometric figure“to a set of axes." .
P’ .

Pon wmn awme wone wnp o —— —

A b B
Figure 4-3
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The method we have Just described, that of assigning coordinates to a given
geometric figure,vis.based upon the properties of coordinate systems developed
in Chapter 2;3 Another method in common use employs the principles of rigid
motidn in which geometric oﬁjectslgre "p@#ed" to more suitable locations
wiﬁhout changing their size or shape. With respect to our current examplé,

we would arrive-at Figure 4-3 throug® this second method by assuming a fixed
'coordinéte system upon which we place AABC so that. A coincides with the
gi&gin(and B is placed on the positive side of the x-axis. The difference
in the methodé is l@rgely_ one of viewpoint.

Another device which you will find useful can be illustrated 'by assigning
coordinates to the vertices o in Figure 4-3 as.follow® A = (0,0) ,
B~ (2a,0) , C = (b,c) . The reason for ustng 2a for the abscissa of B is-
that we now heve D = (a,0) , g.nd we can complete the algebra without .so much
calculation involving fract%ons. The principle here is that a few minutes 6f

‘foresight may save hours of patience. - ' s

Sometimes we pay a small price for the simplicity we gain. For example,
the choice of coordinates suggested in the previous paragraph l‘ea.ds to trouble
.regarding the slopes. Altﬂghgh the slope of AB ‘can be found to be zero,
CD does not have a slope, since & = b . (Use the distance formula with
-d4(A,C) = a(B,C) to verify this,) Nevertheless, the problem has been |
simplified, for this means that AB is horizontal and CD 1is veftical, and
this is also a condition for perpendicti‘larity.

N You might have chosen A‘SO rdinate 1
system in which AB' is on the x-axis % - :
but D 1s the origin. ’i‘his is a fine .’ﬁ‘
ﬂoice. As you can see, in Figure d-b,
ify we choose A = (a,0) , then B = (-a,0) .
It remains for.us %ofprove that C 1lies
on the y-awis. Let C = (b,c) and use
the distance fprmula in da(A,c) = d(B,C) .
You can show that b = O ; hence, C lies A _ D B " -

on the y-axis and CD | AB . .  Figure L-k N

4

Let®Ms summarize the procedures we have seen in this example. Usually

there are more fways than one f:o attack any given probl‘em, but certain.general

steps can be outlined. Tt was natural and useful in this example to use

. o iul‘fS. o T
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‘rectangular ceordinates, since we were concerned with midpoints, lengths, and

.. perpendicularity. Other situations we ﬁeet later may lead naturally to
vectors or polax coordinhtes. In the cases for vhich we decide to use .
rectangular coordinates, we might follow the outline'suggested below. |

(a) Choose a coordinate system (or place the figure on onel\gQ as to
. simplify the algebraic proceSses. Often this means having vettex
of the figure at the origin and one of its sides on the x-axis.

A

—. (b) Assign coordinates to points of the figure so as to accommodate the
’ - hypothesis as simply and clearly as possible., That is, make the . -
iﬁéure sufficiently,«but(net unneceégarily, general.

(¢) If possible, state the hypothesis and conclusion in & way that will
-

correspond closely to the aLgebraic ‘prodedures being used.

(d) Plan &n algebraic proof Watch for: 0pportunities to employ the

. " distance, midpoint, and slope formulas.

~N/ -,
Let us try another theorem from plane geometry.

B Example 2, Prove: -The disgonals of a parallelegrag bisect each other.
Following the outline of our proéedures, (a) to (c), we represent a -
parallelagram in a drawing and orient it wvith respect to the axes as in
_Figurehs We let A = (0,0) and _ . 7
B = (a,0) . The question of choosing |
.coardingtes for C ‘andv D can stand
some discgssion. The coaréinates of

C and D are not independent of

those of A d&d B, nor are they ) - Cé .
ViﬁdepEndent‘ef each other. How much ) ‘ a f’
can we.assume about‘a parsallelogram?

We know by définition that the opposite

sides of a parallelbgram are parallei? A B

This enables us to sec at once that C :
and D have the same ordinate. Further- o _Figurefﬁ-? * . ‘
more, since BC [ ‘Kﬁ their slopes are egual. Thié suggeétu that we use

the slope formula to obtain 8 relation between the ab501ssas of C end D;

namely, that the abscissa of  C is the abscissg of B p1u~ the ‘abScissa of

D . Thus we write D = (b,c) and C = (a + b,c) . If we are allowed "to use

- L]

- 1
- 3. I [}
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the property of a paralle}‘ogram that the opposite sides have equal lengths,
v - . L e—— .
- then we shall reach the @ame conclusion more readily.

2 »

[

) Some-people prefer to employ these elemente-‘:ry properties of the commonf
. figures; others choose to assume no more than the definitions. For the
purposes of this sectiOn we shall agree that we may use the properties
ascribed to geometric figures by their definitions and'q)/ the theorems ligted( e
_ . in Exercises 1+-2, taking these theorems in the order in which they are Iisted.
Our current example would be listed after Exercise 4 so the conclusion of '
Exercise 4 would be é.failable to us when we ghose eoordinates for Figure 4-5,

3 .

v Th'e conclusion of our exsmple is reached quickly. We are. required to.
prove that the diagonals bisect each other. This ge‘mm.that each diagonal -
interseets the other® at its midpoint, An application of the midpoint formula

+b ey
CERI

\ - shows fhat the midpoint"of"each diag‘onal is: 5

We conclude this section with e challenge. ‘I‘ry to prove the following
theorem by synthetio metmds, and compare your proof with /the one suggested '

v

v beiow. ‘

- . ' . & . ¥ -
. ) S

‘ ML_ 3. Prove: If two Tedians of & triangle are congruent t;{e .
triangle is isosceles,.

" . .

-~ ' We prefer to use coordinates, The tria.ngle must not be assumed to be:
) isosceles, so we assign coordinates in® A R
Figure L-6 s follows: A = (2&,0) ,
B = (20,0) , C =(0,2¢) . Let M = (a,c)
be the midpoint of ~AC , an%_;et
N = (b,c) be the midpoint of BC .
Next we shall express the hypothesis, ‘
a(A,N) = d(B,M) , in terms of the +
distance formula. You are encouraged‘

to state the desired conclusion and to

- ‘complete the details of -the proof. .-

. s
*




'Exerciaes h-2, L.

of plane geametry. You are to prove theae theorems in rectangular eoordinates,.
using the ground rdles" we have ouﬁlined.

£

1. The line segment*doining the midpoints of two gides of & triangle is
parall¥l to the tHird side and has length equal to’one-half the length

[y

of tHe third side. . ’ _ -

2. If & line bisects one aide of a triangﬁe and is«parallel to a second:
| side, it bisects ‘the thfrd side; B

3. The\Locus of points equidistant from.two points is the perpendicular f{‘
- bisector pf the line segment Joining the two given points.

L. The opposite sides of a parallelogram have equal length.

5. If two shdes of .a quadrilateral have equal length and are parallel
' the quadrilateral is a parallelogragr

6. If the diagonals of a quadrilateral bisect each other, the quadrilateral

is a parallelogram. . ) ' - ¢

: h » .
T. If the diagonals of a parallelogram have equal Iength, the parallelogram

e ) ~

" 1s & rectangle.
8. The diagonals of-a rhombus are perpendicular.'

'9ﬂ If the diagonals of a parallelogram are perpendicular, tbe parallelogram

is a rhombus. v ) .
‘ A
10. " The line segments joining in order the midp¥ints of the successive gides

¢ of & quadrilateral form a parallelogram.

The line segmehts Jjoining the midpoints d% the opposite sides of a
” &uadrilateral bise@t each other. *

F*
Pl?_{; ‘The dismonals of an isosceles trapezoid have equal length.

< -

13, The median ol a trapervoid is parallel to the hases and has length equal
to one-half the sum of the lengths of the bases. R e

14. If a line bisects one of the nonparallel‘sides of a trapezoid and is
’parallel to the bases, it pisecta the other nonparallgl side.




iy W ‘ ’ . " e

15."In any triangle, the square of the length of a side*opposite an acute.. ’
angle is eqpal t9 the sum of the squares of the lengths of the other two

Y side& minus.zﬁice the product of the length of one of the two sides and .

o .the length of the projection of the other on it. )

LA
16.- The medians of a trisngle are concurrent in a point: that divides each of
the ngdians in the ratia 2:1 . L

17. The él%itudee of a triangle are concurrent,
.. . f.r . e . .

18. A line through a fixed point P -intersects a fixed circle in points
A and B . Fing the locus of the midpoint of AB . ~ (Cansider three

possible positions for P . relative to the fixed circle.)

. K . . . . ) ’ . .

%-3. Proofs Using Vedtors. . S ' ' e

[ L - -
)

We shall now prove several theorems of. geometry by vector methods. Some °
of the proofs are moge difficult than those using methods discussed in your {
geometry course or in the preceding section. Others are aeeomplished-mﬂre ]
simply or concisely. In- any case, the experience will Be of great help in }
future mathematies, courses end in applications to science or «engineering. ;
It-will contribute toward your genered ability to solve problems by giving
you an additional tool and approaeh '

We shall demonstrate these approaches by solving several problems in \
" detail., : |

B L]

Example 1. Prove that the nlediam of a trapezoid is parallel'to the bases
and has length equal to one-half th ‘gsum’ of the lengths of the hnseS.f

£

“We‘;iref draw and label & trapédzoid .

ABCD with AB || TD and with E and F

‘“the respect ve midpoints of AD, and BC .

If we werefusing a rectangular coofdinate.
system in this proof, we probably would

chosse thr axes as in Figure L+f. But D C

since we are using a vector proof, we'do
not need the axes at all. In fact, E

" because the origin vectors would not give

us any advantage in the proof, neither do . . ’)

we specify an origin. . ' ' " B

. L3

¥

A
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" A vector drawing for the problem might then appear as in Figure 4-8,

P L

- .
)

L) - ’ N " . . ‘ '
. ol .
D & d. ‘ .
-
- . o :‘
E x v:h
' )
- £ a
-~
. c A
A v . L] ‘
. L : Figure 4-8 . !
Something should be sald about our choice of vector representation. ‘JRLQQ‘

Since E 1is the midpoint of AD , if we represent AE by’ & , then ED |
may also be represented by 3. Similarly, we choose T on the o‘ther non- .
parallel side. ¢ and d represent the bases, and 53 represents median EF .

&

We are to prove : : LN

- -

d(E,F) = %(GEA,B) + d(é,n)) aﬁd( X|| T and g1 F

‘Since one may move from E to F* by going directLy there, or: by
going through D a&and C , or by going through A and B, we have

j"' . P S e '%

X = & { d - b

. * . . e uim L4
and . ‘ * ¥ X=-a.+¢c+b;
i il wlli ¥ B
therefore, - . 2x=—c+ 4d,. '

Note again that when ' mpving arounﬁ a vector diagram,zwe add vectors which

have the same sense of q;rection as our motion, and wve. subtract vectors which

have the opposite sense .of directiOn of our motion, A

Al

" By the definition of parallel vectors, if X = ¢ + @, then
i ) ol -l -l
x || (e +'5} ; since 1t is given that ¢ !t , it follows that x || ¢

o

‘and  x |} d . FurthermOre, if ox-c+d , then .

X - 3(e [3]) or 9(E,8) - (ata,3) + atc,0y)

hence, the theorem is proved. You may wish to investigate what happens to the
proof if yow alter the direction of any of the vectors in the diagram.

- '\ 1&153
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‘ a.s an origin, and draw the origin- .

. « .
Exanple 2 é. Show that the midpnints of - the sides of a quadrila.teral are. )
) the vertices of a para.llel'ogram : ’

This situation is depictéd by Figure S,
4 in which P, Q, R, and 8 are the
given midpoints_ of the sides of guadri-
lateral ABCD , Once we choose an |
origin, each point of the figure de- .
termines. an origin-vector, (i‘t might
be profitaeble for you to - ccpy the figure - A

' on a piece’of paper, select some poinf.

vectors to the vertices, )

L3

. \' Figurs b-9 .

A portion of the figure with a set of L | -
érigin-vectors is shown in Figure 4-10. N |

We have also identified the vectors from ‘ ‘

A"t,o P and from P to B in order ) . ST
to make use of the fact. that ' .
a(a,?) = a(®,B) . |

ol o wllie
Since P = A +- 8
ol ol o
a-rld P=B"a, A
( ol o o
) 2P = A+ B
¢ . ol l- = : i
or - PTQ(A"’B)Q .‘\ .

Similarly, Q = %(B‘ +C)

LY
H

FeREeD,
5B+ . S Figure 4-10

-~

. - y :
(Had ‘we not been interested in calling your attention to an application of
vector additjom, we would have obtained the same results from the Point of
Division Theorem. )

154
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" We next note that vector P - Q is equal to vector Sfx R becéuSe both
are equal to —(A - O . But vy did we choose an expression like Bar Q ?

| There is a good reason fcr the choice. "The 1 e\nxvector P - Q is parallel
‘ to PQ "and remember that we are to show that certain segments are parallel,

i am  de A

In order ta see the importance of P-Q@=8-R, let us take a closer
-look at this situaticn,using a different origin. Suppose _we isolate the

£

lower part of Figure i- 9 containing »
points P, B, and Q as in Figure* .
ﬁ-ll. If we choose B as the. origin .

0
~ )

-and E so that B 1is the midpoint of

QE , then wé have vectors &s marked on- ( B | e
‘the diagram. The 'vector from Q to' P ° TR oL
is -q + p which equals - Q and is

therefore equal to T . It follows then

that the 1ine on vector P ‘Q is

parallel to PQ ‘ Sic}larly the 1ine on
" vector S - R is parallel to SR ; and,

since P - Q 1s equal to &nd, consequmtly, o \gl -Q
parallel to S-R » we conclude that , )
PQ || SR . In ghe same way we show that . ’ .
S ||TQR , and PQRS is a parallelogram. v +.  Figure 4-11
. ; L ,'\ R
Example 3. Prove that the medians of a triangle intersect in a point

which is a point of trisection of each median.

o
)

Solution. Let ABC be the triangle and P Q, and 'R the midpoints *
of its sides as shoun in Flgure 4-12,

.

A Q | c
Figure 4-12

Q - o ' 149 1.5555
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L By the Origin Principle we may plage the origin uherever wg wish. If

we are successful in provioé the medi eoncurrent, the point of intersection
would be an ideal choice for the origin, for then ehch origin-vector to a
vertex would be collinear with the origin-vedtor ‘to the migpoint of the

-

opposite side. : '

. We cannot assuﬁe all three medians concurrent, but we can let the origin
0 be the intersection of AP and BQ ; Then to prove that CR contains

this point, we must prove that R and C are collinear, or that R is a

.scalar multipleof G " .

Proof. Let the origin be tne intersection of AP and BQ . Since P
and Q &are midpoints, and since P and Q are eollinear with A and B

_ regpectively, we may write '

-

%

Eed

g-,.»,_;,-‘ L - 1,™ a

R E] 2 3. L
.. . v s < «*\ * G ¢ YTt
: R R (N:f)f NPT

(2) T=LA+0) - 8.

A <

If we subtract Equation (2) from Equation (1), we obtain

Lan R , ‘N
. P - Q = _2‘ B ’é - xA - yB e
. ' ‘ N :
By'the unique linear ‘combination theorem (Theorem.3-55&, X = - % and

y = - % . The ggometric interpretation of thie discovery,isvthat. 0 is a
triseetion poind of AP and' BQ . If we substitute these values, in

e . Equations (1) and (2) and add, we obtain' P
.t . %
anliin - ~ ) ol T el il
- P+Q:—%A+'—};B+C:‘.--};K"—%B.
' & oa <., et

~ ° < "

- 1, e o . *.
Since R = —=(A + B)', the second. two members of this eduality become
- c

R+C--R or R=-=C.

Thus, R and C are collinear, O is on TR, and O 1is a point of

s trigection of CR . . _ . ' ot

-

TIf we choose another point as origin and let G be the point of_inter;

section of tite media s, the Point of Division Theorem permits us to write

) s 1%, 27 :
® G - 3 A+ g P, .
or G-2R+55B+5C =3h15B+3C §(A+B+a. e
) . 150 § = ¢> "
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We have not only solved the problem, but a.lso have represented the point of
concurrency by the vector —(A + B +a . This point is called the centroid
of the triangle and has an 1mportant property connected with the idea of the

center ai Eavity of a physical object.. If a thin uniform sheet (such as

cardboard) is cut in the shepe of the triangle, 1t can be balanced on a
pencil point placed at the point corresponding tor the centroid,

L4

" Example 4 Show that the bisector of an angle of & triangle divides

the opposite side into segments whose lengths are proportional to the

\ -

4

lengths of the a.djacent sides.

Solution. Let PT bisect JQFR ,
and let the vector from P to Q. be

‘_'re;presented by ;, the ,vector ffom P

to T by b , and the vector from P
‘ to R b} &, as shown in Figure 4-13.
We are to show that ” -

d(R,T d(P R)
d(T,Q a(p,qQ) *

i

. ‘ W : ‘FPigure 4-13

This problem involving an angle bigsector affords us an opportunity to

demonstrate the use of unit vectors in a solution. ‘A vector which bi_pects )

the angle betwen Y a.nd T must lie alofig the diagonal of a rhomhug vhose
nddacent sideaj ie along 2 and ? . We employ unit vectors to accomplish

this result. a . ' p
! * - A .
Any vector along ¥ can be represented as a scalar multiple o 2. In
p&rtit/ular, the unit vector along a‘ can be represented by or __}
| Ia)
-l fa
Then the vector frgqm P to E , i » and the vector f{fom P, to F ,
- !8 o
a

, determine 8 rhombus Whose diagonal PG bisects thk angle determined -

5]




* . +
~

F o . : o o
“  Now suppose T is the ratio g g . Since the vector from R to Q
2

~

is (& -70) 3 the vector from R to T may be expressed as r(a - c) R and

tpat from T to Q by (1 - r)(& - C) . We may write '
' S T aTer(E-) | >
(\ : - .- ; ) .
and obtain k |—— + —=—] =TT+ r(?-?),or"k g T=18+(1- ).

E/ A - R - R

Equating the eorresponding coefficients, we have

. o ‘ __— . g = o . )
T | = . R L L
. - ,‘/ " . )

. Tt follows that -

Exercises lL- 3

-

-1, Give a v&etor prooi that the diagonals of a parallelogram bisect each

*

other.

2., Prove By using vectcfs,that & llne segmefit which Joins one vertex of a
parallelogram to. the midpoint of ' ’
an opposite side.passes through a
point of trisection of & diagonal.,
(AB 1in the figure.) Prove also

that the'diagonal iB passes ..

through points of ﬁrisection of
OX and OY .

' 3._ Rework Example 3 for the case in which the origis is selected to be the
point A . Does this ‘choice of origin simplify the proof?

Q- | . 1;2158 .
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.

» o8
o , . . h-}
In parallelogram QABC , OP intersects AC &t Q.. = -°
. P .
.oa{eP) 1 c 1
I 3(c,B) =T + Shovw thet iRy =¢%T

A

o

Ekercises 5 to 10 are thedrems from plane geometry which you are to

prove by the vector methczdé illustrated in the examples ‘his section.” .

If two medians of a triangle have, equal length then the trisngle is .,

isosceles. . -

The median to. the base of an isoscelgs triangle is perpendicular to
the base. d

‘The line segments joining the midpoints of-the opposite sides of a
quadr'nateral bisect each other.

The line segment Jjoining the midpéints of two sides of a triangle is
parallel to the third side and has]length equal to one-half the length
'of the ‘third side. ¥ T '

. -

An angle inseribed in a semici/éle is a right angle.

The bisectors of &8 pair of aqdacent supplementary angles form a
and F are midpointg'of MBC , as shown., Let the %ector from

D be = s
/ .
E 'be D s the v§ttor from

right engle.
D} E)
A to
B to

~ the vecﬁor from

tée F be
it il
= Oro

c
oin oA
a+b + ¢

o

. Prove thag
¢ 4

”,a
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L4-4, Proofs Using Polar Coordinates. -

problems involve rotations or trigonometric functions.

The following example from trigonometry illustrates on

2 [ ] -
Example 1. Show that cos(ﬁ - a')/j cos B cosyg a\¢ sin B sin o .

Let ‘[0'.' and / B be ms shown in

Figure 4-1k. We select points B and *
‘C on the respectivg; terminal sifles of

the angles.and let d(B,C) - a ,

d(A,C) =b , and a(A,B)=c . The
‘distance formula ‘tells us that o

E]

(1) a® = (x, - x1)2-+ (v, -'y1)2 .

Figure il

B,
Now if we convert from rectangular to polar coordinates as E}utllned
Section ‘2-5, Equation (1) becomes ‘ -,

]
i
5

v

ag=(b cos P < ccos a)2+(b sin B - ¢ sin ‘o )2.

L

| 2 L
Exp ng the right member and_ applying the identity sin~ @ + cc}s2 e /;-«"1 y -

we opedin : o . : .

s r‘) . :
(2) a° = bf + ¢ - 2be(cos B cos g + sin B ~sin a ) .
Noting that the measure of ZBAC = B - @ and comparing Equation (2) with,
the Law of Cosines tor AABC , we see that _.' . . . '

.

!cos( B - a)=cos f cos a +sin B sin a.-
‘ R

As foF the next' example, it is unlikely that anyone would cheose thlo
kind of proof when ¢ther proofs are avah a.ble, but nevertheless, it may,fbe
instructive to look at one demonstration oi a simple geometric proposition

using polar coordinates. *

160
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g ' Exemple 2.

bisects . the vertex angle.

onsider Figure 4-15, in whieh
A ZBC . In order to describe the

. angles in question, we let € be
_the p;éle._ ‘We also let D, the mid-
point of AB , 1lie on the+polar axis.

-

T h-§ .

L 4

. Prove that the media.n to the base of an isesq!eles trga.ngle

B(r,ﬂ)

* Without loss of generality, we have © g‘) -
= (r? @ ] B ‘; (r, B) . We muﬁ% e ! “
‘. prove. a=- B . . .
. - - _ A(f. a') | :
‘ ‘ ; ' Figure k-15

To simplify the notation we shall let d(C,D) = f and
d(A,D) = d(B,D) = g .

-

Applying the Law of Cosines, we have,

T 2 - 2 2 .
“ in ABCD s . g€ =r +f - 2rf cos ﬁ 2
. . \ e
2 2 2 . \ .
, and in AACD, & =T +f‘—2rfc'08'&- < : L
gt ¥e see then that cos @ =cos’” B+, Since 0< a < ?2- and y )
_.’é< g <0, thig implies. @ =-8." )
. X ‘ . . N -
. ) . ~ :
4.5, Choice of Method gi Proof. - . - 0

It is time we paused to survey the variety of probleni—eolving tools
which are now at our dispogsal. We have a choice of. three basic systems
--rectangular coordinates, polar coordinates, and veetOrs, within each
system we have different representations to suit different purpoaxes. But %he
question uppermost in your mind at the montent probe.bly is, "How do Ldecide

which method is the best one to use?"

The, question does not have a simple answer. Some pProblems are best
worked by one particular method,. otheWoblems seem to be approachable by
- any of these methods, and some problems appear to be impossihle rege.rdless

of what we try. ) -~

'Y , .
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. However, there are certain gujdelines which may help us.

(1) Try to decide upon a coordinate system which is appropriate to the
problem. Think over what is known about the problem, or what is to

' be proved, or what kind of answer is required, = .
.‘ 3 .,
(a) Distances between points, slopes of lines, and,midpoints of

segments are easily handled in rectangular coordinates,
therefoye, when fhese ideas are present you should try to
L it rectangular coordinate axes to the problenu

ot .
« . v ...

- (b) If the problem inwolves angular motion or clrcular fUnctions, -
o ‘ 4’
it would be vise to look at the possibilities of polar forms

. -
»

() Vectors are quite versatile and fit a wide range of conditions.
Concurrence, parallelism, and perpendicularity of lines.
..well as problems of physical forces, are situationa which might

. lead you to choose ‘a vector- approach.

.(2) Make a drawing relating.the knowa facts of thé problen to your N
. choice of method. Much time and effort may be saved by & reasonably 2
accurate drawing. This not only helps to relate the pagts of the

problem, but it serves as a check gn the calculd?ed results.

-

(3) Cheose coordinates or vectors so as to simplify the algebra. Take
advantage of all the given infbrmetion at this stage, but be careful-
» that yoanaintain generality where it is required.

~

(4) Watch for opportunities to use parametric representations. This
may be something new to you, but you will obseérve frequent cases '
' in succeeding chapters in which this special method will simplify

troublesome problems. « ) ’

. “ ']
(5) - Work many, many’problems. It malso will help if you try to solve 8
‘ - given problem in several different ways. ,In this area of mathe-

s

'matics, experience is probasbly the& most valuable asset. Sometimes

& choice of method can be explained only on the hasis of experience.
e

(6) After you have completed your solution‘to a problem, it is wise

to look back over your wo;k You may see an unnecessary step you I
can eliminate, an unwarranted assumption you should justity, or a
generalAtightening up you mey accomplish. In any case, you gain a
new perspective on your work which increases your understanding and’

4

apﬁreciation of what you have done.
3 N ) B
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- Review Exercises,

~

For Exereises 1l to 10 first choose a eoordinste syst which you think
15 .appropriete for esch theorem, and ‘then prove the theorem aceordingly ¢

/
1, The midpoint of the hypotenuse of a xight triangle is equidistant from T
the three vertices of, the triangle.

-“E—~>The locus of the vertex of'a right argle, the sides &F which pass .

through two fixed points, is a circle,-

3,, The diagonals of & reetangle have equal length. . A "\

%, Show that the sum ot The sguares of the lengths of the sides of a
paralleclogram 1s equal to iLs sum of the ‘squares of the lengths of \
its diugonals.

5« The line segments Joining in order the midpoints of the 5 eCessive si es.

of an isosceles trapezoid form a rhombus, T :

e The line segment Joining the midpoints of the diagonals of a trapezoid
E]

lu parallel to the bsses and has length equal to one~half \the
differenee of the lengths of the bases,

Te If lines are drawn through a pair of opposite vertices of a parallelogram
and through the midpoints of & pair of opposite sides in such ™ way that
the lines intersect one of the diagonals i distinet points,s the lines
are parsllel and the disgonsl is'trisected.

8.. The perpendicular biseetors~of the sides of a triangle are cohcur ent
’ in a peint that is eqﬁidi§taﬁt from the three vertices of the t angle,
¢ Y e

9, If two sides of a triangle dre divided in the same Tatio
vsegment Joining the points of division is psrallel to the tRird side *

and is in the same ngtio to it. . R

10, Show thst the vector Joining the midpoints of two opposite sides of a
‘veetor ,quadrilateral is equal to half the vector sum of the other two

.

sides, =« o + :

153 .
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-~ OABC DAEF and. BFG‘G are each para.llelegrams. Pre\re that t.he .
ctiVe diagonals of, the p&rallelograms OB , m and m '

) extended a.s necessa.ry, meet in a single poin‘b X.. . /

IS L]

In parallelogram °OAGCB , let P

and Q be poings Qn@pﬁ B
such that d(A,P) = a(B,Q) . Let

oP intersect AC at i a.nd le‘t
ﬁ' intersect B8 at Y . ‘Shov .
-.,f;\m || 8. . .0

14

f

Prove that thé sum of the squares of the’ lengths of the sides of a
quadrilatera.l exceeds the sum of the aqus.res of the lengths of its
diagonq.ls by 4 tipes the Sqlia.re df the lengt.h ‘of, the line segment .

that Joins 2he mj dpoints of the dia.gona.ls. . e _ .

~ A band of pirates burled their treasure on an d‘sland. "They chose a gpot

at which e bury it in the follovi-ng manner: Near the shore there were
tvo la.rge rocks and a large pine tr.ee. Cne pirate started cut from one
‘rogk along a line at right a.ngles to_the liné®between this rock- and the
- tree. ° He marched a distance equal to the distemce between 44 rock and
the tree. Another pira.t,e started out ofmm the seccnd rock along a line
:at right angles to the line between this setond rock and the tree a.nd

marched a" distance equal to the distance between thisy rock ang the treg.
r i‘ . “o
The rept of cthe band of pirates then found - the spot midway between

these two s.nsi there buried “the treasur €.




)

-

o | ‘ e

Me.ny years lafter, these directions- came to ligbt and a palrty of
treasure-seekers sailed off to find %he treasure. When they reaehed the
island, they found the ¥wo rocks’ with no aifficulty. But the tree had
long since disappea.red, so they' did not know how to proceed. Al seemed

'lost till the cabin boy, who had Just: finished his freshma.n year at Yale,
spoke up.  Remembering the analytic geaqmetry he had stﬂdied he calcuf

-lated where the tftasure must be, and s short spell of digging proved

[

4
him corree’t. How.did he do 1t?

Ll




Chapter 5

. T ) GRAPHS AND THEIR EQUATIONS e . K

b - L 3

5-1.- Introduct¥ion

- .

In Section 2-2 we discussed sets fbf points and their anslytic regresenta-

s at the h!art .of analytic geometry, and .
ns briefly We confine the discus-
sion to the plane, but the extension to space ispEEZediate. The sets of points,
will frequently be the geometric figures we met earlier, ‘and the analytic re-

tions. The relation between the two

‘we shall review the fundsmen

presejtations will usually be given in algebraic or trigonometric forms that
we have met before. . We propose to relate these ideas with the hope that your

competence and appreciation er their use will continue to grow.

Let S be a set of points in a plane with a rectangular coordinate sys-
.tem. Lét s(x,y) be an open sentence involving two variables. Iet S con-'.
* sist of those points (a,b) of the plane such that s(a,b) is ‘true. Then
we say 8 1is the *locus (or graph) of the condition s(x,y) , and s(x,y)"is'

@ condition for the set § . Thelplural of "locus" is "loci, (It"'is pro-
nounced as though it ‘were spelled "low-gigh", .The rectangular coordinate
system in the plane could be replaced by any other coordinate system appro-
priate to the problem and to the space in which we are working. «The choice
of a coordinate system determines the "language".in which the open sentence is
 stated. We shall often be concerned witn the limitationsAef a partI®ular
language, and bhe details of the, translation from one language to anothcr._ .
: Some of‘yon may_gg_gggdffg/: different way of talking about the matter.
In the SMSG Ceometry there is a discussion of characterizations of sets. A
condition is said to characterize a set if every point the set satisfies
the condition and every point that satisfies the condition is in the set. The
conditiong we are chiefly intereeted in here are analytic «£onditions (condi-
"tions on the coordinates of points), whereas in Geometny tﬁc conditions were-

s AN
stated in geometric terms. -

- *




Conditions for Loci ot Graphs, and Graphs of Conditions

The discussion above is quite genmeraml, but in practice the conditions
t) tterfﬁost are equationg and inequalities. For example,‘we define the
graph of an equation (inequality) in x and 'y to be the set of points whose
coordinates satisfy the equation (inequality). Thus the locus of the equation

x4 y - 4 1is the circle with center {0,0) and radius while the 1otus

of the inequality xy <O is the set of points in the second quadrant or in
the fo%(th quadrant. Using set notation these two loci can be ‘expressed as

.

follows: -

o 2N
x,y) : x* +y =14k},

]
!

)
|

~ = (x,y) : xy <0} . ~

Using the same notation we can express the loci of the equaxion f(x,y) =0,
and the inequality g({x,y) >0 as follows:

- : {p

(x.0) : £(x,¥y) = 0] ,

(x,y) g(x ;Y) >0} .

. ‘ P
A\ ‘
‘ We now take up the problem of finding an analytic condition for a set of.

A

‘

points in a plane. ere is no routine procedure for doing this, but the
following advice may be useful. . . - “
First a uord about the choice f coordinate systems.. ° When the terms Sf
tpe probl%m 1eave you free, think carefully about the coordinaxe system to
use., Some curves with complicsted equations in-rectangular coordinates have
nice parametric representations. HAn equation in rectangular, coordinates for

.a’ certain curve may be simpler than it is otherwise if a coordinate axis is an

“l

axis of symmetry. A clrcle of radius 3 has a simple equation in rectangular
"coordinates if its center is made the origin, a still simpler equation in polar

coordinates 1if its center is chosen as the pole.

Following common usage we williuse X and Yy fo} rectangul ar coo}di-
.~ nates, and r and 6 for polar coordinates, We willlalso assume in each cdse,
unless otherwise specified,” suitable cholces of axes and units., Only with these
assumptions may we speak about "the" locus of an equation. Without such assump-
tions an equation may have several quite different' graphs, depending on our

choices of coordinate systems. These matters will be considered more fully

1

later, particularly in Chapter 6.

After choosing a coordinate system we can attack the problem. We start

with a given set of polnts. These points are not given to us in a basket but

162
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\1nstead are determined'by some geometric condition. We are'looking for an
equivalent condition in terms of the coordinates of points. ¥ let us look at
what we do in several examples.

-

Example 1. We describe certein sets of points of the plane. You are
asked to give analytic deseription of each set.

(a) All the points of the x-axis, _ . '
Solution. (P = (x,y) : y = 0} .
() Afl the points sboYe the x-axis.
* Solution, (P = (x,y) 'y >0} .
(c) ALl the points o&the plane. except those on either &xis.
. Solution. (x,y) : xy £ 0} . |

(d) The midpoints of‘all line segments in the first quadrant which, with

the codrdinate axes, form a triangle whose area has & measure of 12

‘square’ units. _ . ~ ' - *
. Solution. If P = (x,y) 1s one such pointy the endpoints of its

segment have coordinates (2x,0) and (0,2y) .. The triangular
‘region will then have area 2( )(2y) , which must equal 12 . _We
)

have the simpler equivalent relationship xy = 6 . The graph of
this relationship contains points in the first snd third quadrants

N
but we want only those with posifive coordinotes. Thus, our answer

is (P=(X,y):xy=6,x>0',’y>,0}'-«-

Exemple 2, Find an eqpatio? in rectangular coordindtes of the locus of
all points equidistant\fnpm two. distinct points.

: ! . 4
Solution. Let the x-axis be the line throug® the two points and let the
origin be the midpoint of the segment deteﬁﬁdned by them. Then the two points

are (a8,0) and (-a,0) . Let (x,y) be any polnt in the plane. Then’the

distances to (x,y) frem (a,0) and (-8,0) awe 4?; - a) o+ yf and

JQx + a) + y2 , respectively. T%E)point (x,y) Dbelongs to our locus if and
only if these two distﬁheesgézf_ggpsl, thatr is, if and only if

>

(1) { /(x +a)" + ¥y 1/(X~a) )

Thus (1) 1s an eqnation of the locus. (1) is, of course, not the'sin;I;Zt

possible eguation for the locus. What is, and how can you get it from (1) 3
~

. | . 163 ’-llf;&?
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Example 3. WE present some'ﬁnalytic aescriptions of sets of points of the ‘
plane. Descrihe these sets 1n-erdinary English. : _g Ea ,f“ “\;;h,ﬂ
(8) (P=(r0) :xr>51, I
| Solution, ‘M1 points outside a circle whose eenter is at the- pole j_ ‘
.andwhoser&diusis 5, b A U
(b) @=(uy) clxt3lin. S L

Sotution. All the points on two parallel lines. These 11nes are '
parallel to the lime x 3 , and lie one on each side of 1t and T
units awdy. o

/

(o) (P = (x,y): xy+EX-y>2) . o '
PN o 3

* Solution." -Thig inequality may be uritten xy'+ 2x - y=-25>0 1, or 32 '

{x« 1)y +2)>0. This statement will be true for values of X ,f
and y such that elther: Lo <,':i o ]

X«1>0 and y+2>0, 0or x~1<0 Bud y+2<0;-
that is 1f either<

> 1 and y > 2 ’ or x < I snd y > -2

The poiﬂts we want lie in two yf”

| "quadrants" 'as indicated in o - “ .'25{_ ' ".i-ﬂ ' .;:"
_ Flgure 5-1. Thg graph does ' . Eggaﬁf . | .

not include the boundaries of

5the reglons. Howicould you

change the analypic'descrip~
tions of the set to include
these béunda%ies? '

[N

} Figure 5«1
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. o JAY, P(x,y) s [x+1] <3 and |y+1] <},

Solution. All the points of &

rectangul?r regipn, with center .

: at the point (-1,-1) . The , . 7 s o

v region'is 6 units wide amd . - / , .

o does not include the vértical - ,4 _ .

‘boundaries; it is 8 .units
high and'foes include the

‘ . horizontal boundaries., It is

Y _ pictured in Figure 5-2. We

: note that the corners of the

e . " fon are nbt points of the : TN
.\" . .‘: gr ‘ » ‘ R - —_— ‘

; 8 (e) (®= >r.9) : |rj- 5.0 <.1} .

1 o ,; Solution, The et of points T .
' of the annular region between Vtd A

N RE two concentrie circles center-
' ed attthe pole. The inner f! ' - '
g - 1 circle has radius 4,9 and é
\

- R the outer circlé\has radius
. 5.1 s but ne}ther circle is
part of the locus, which is
illustrated in Figure 543.

IS . Figure 5-3

) % ©  We have been using set notation because we wanted to te perfectly clear.

9 ﬂ%reafter we shall be less formal. We might state the problem of Exercise
8 3(é): Describe and draw the grapt* of |r - 5.0 < .1 .
. Example 4., Find an equation ip rectangular coerdinates for the locus of »
f‘ all points which are equidistant from‘a g}ven point F and a given line L .
' \ . £
Solution, The geometric condition for the locig defines a paracola, whose

.equation we now derive from the condition. With this in mind we let the line

through F perpendicular to I .be the y-axis, with the origin at the mlqﬁolﬁt

of the segment determined by F and the point where the perpendiculer

N #&70

° : . ! .
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intersects. L . (If F 1is in L ) we

pick F as the origin and leave the )
further details in this case as an : - Ly
exercise, ) Finally, we let the | |

8 | r

y=-coordinat ‘F be -g- where

p >0 . %Then F=(03) and L is

: = D

.t.heline yZ-E, :
W :

, Let P = (x,y) be an arbitrary :

e point in the plane. Then the things - ol ) ! x -
talked about in the geametric condition -~ - "'“"“',"“L
gre the distances from P to “F and L =‘Y\=-§ ) -G
to L . Using the distance formula we : ol

* find that the first of these is

. ! -

J&E + (y\r 5)2 . The second 1s Figuré 5_4

*

ly + g[ . The geometric condition says these two distances are to be equal.

I I . ( : . .
Hence ! ’ ) ‘ i ‘ s " \
. ‘ > p r .
(2) PSRN J&r + (y --§ ) [y + §f . /

, :
is an equation for the locus. This is a complete solution of the original
‘problem, bit a simpler eqdagadh-can'be;found. If we square both members of

and combine terms, we get the equation
A% ‘ '

(3) ) . x° = Opy .

- -
There remains the.guestion of whetherk (2) and (3) are equivalent.

The only operatdon we Mave perfcrmedvﬁhich migﬁ% have” caused trouble was the

squaring of both sides. But any péint on the locusg of (2) 1s on the iocus

A\ Oof the equation cbﬁained by squafing both members o},.(g) , and hence on the
locus of (3) . That the reverse is also true can be shown most simply by

considerxng a more generil problem. Let (a,b) ‘be a point on the locus of

(I(X,If)) (a(x,5))7 , eo that (£(s,))" = (s(a,0))" . Th[n
in the domains

rla,b) = ﬂ_g(a3b) . Now suppose, further, that if (x,y)
of f and g ’ then f(x,y) >0 and g{x,y) >0. "We cannot have

f(a,b) = -g b) unless both are zero, and hence f(a,b) = g(a,b) . Thus

*

(f(x,y)) x,y))( and f(x,y) = gﬂzfy) are equivalgnt equations. This
se result settles our stion for us, since both members of (2) ATe non-
L ' qu§\¥‘[ . .

negative for all x and y .
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Example 5. A Coast Guard cutter, searching for a boat in distress,

. travels in a path with the property that the distance (in miles) of the - cutter
from its starting point, 0 , is equal to the radian &n measure of the angle gen-
. erated by the ray from 0 to the cutter. Find an equation of the path in a
suitable coordinate system. (Assume the surfacé of the ocean is & plane.)

i
[

Solution. The description of the path suggests that we should use po
coordinates, with O as pole and the polar axis in the a1 sction in whid the

cutter is heading when it starts ité search. If we do this we get immediately
the function defined by the equation .r = § . (By choosing the positive direc-

tion of rotation properiy we can make . § ‘positive.)’

The path is & spiral.‘ . - .

If we use rectangular coordinates we. get a much more complicated equatien.
Furthermore, no matter how we choose the sxes, the equation does not define a
9

function. Can you explain why not?

]

Related Polag @ations. In writing an &nalytic descriptior} of a set of -

" points we may use to our advantage the [reedom we have in choosing the type of
coordinate system, the placement of the axes, and the units. In the case of
polar coordinates there is an ambiguity imposed on us by .the fact that each

point now has infinitely many pairs of coordinates. This makes some matters

easy, apd some difficult, If a moving point traces and retraces its path in a
recurrent p&ttern,zxpolar eﬁuation for the locus can represent thic pattern,
since (r,0) and (r,0 + 2rn) are, for integral values of mw, coordinates

for the same point. On the other hand, since (r,8) amd-(-r,8 + ) are ‘
also coordinates for the same point we cannot avoid a certain ambjguity in /’

~
writing equations of loeci in polar coordinates. A point 9 } on the
. curve represented by the equation r = f(9) 'also has the cpordinates

167 172
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| =2 f -t . | \

J

;. (-rh y 8+ ) . If we substitute the latter coordinates in the equation wé

f .
ohﬂ%ig.the equation -r, = f(el + %) which may be written ry
I ! '
Do i ! N :
*  That ‘évery polmt of the curve reprgsented by 1 = £(8) 1s at the same

= -§(61_+ w) .

t%:0f the curve represented by r = -f(6 + ) . We will call these
R R & \ T .
eqraticns sl : ‘
SN . : I »
Y , L e r = F(8) ]
4 | * r = -f(8 +1x), ¢ | '

0

related polar equations for the curve. In some cases theje related polar -
W

equations are quite different in appearance and it- takes some experience to
recognize that they represent the same curve. On the other hand the related

polar equations may be identical.

A -

Example é. The 'related equation for r =35 sin'@ 1s r=-5 sin(e + 1)

= -5(-5in 6) = % sin 6 , and T3 thg same as the original equation.

~ )
Example 7. The.felated equation for r = 3 tan 8 is

r - -3 tan(@g n) - -3 tan § , and is Qifferent from the original equation,
' _ | .

: Example 8. The related equation for r = 3(1 + sin 8) 1is

r = -3(1 + sin(6 + n)) = -3(1 - sin @) = 3(sin @ - 1) , and is different from
the orjginal equézlon. ' Ca -

L4

Eb(&mpleg The related equation for r =5 1is r = -5 , and is different
from t@e original equation. * .
e . -
Because the correspondences between points and their polar'coordinates and
between sets of points and their representations in polar coordinates are not '
unique, we must define Lhé graph of a polar equation to be not tfie set 9;
points whose coordinates satisfy that equatlon but rather the set df‘points

. each of which has some pair,of coordinates that satisfy the equatfon.
<
_ $

|

[

¢

| . - .
: \ Exercises 9=’

‘ o e

For each of the following, write ap equation or statement of inequality

“"of the locus of a point whigh satisfies the stated condition. Use the co-
ordinate system you think a%propriate if one is no&,{éeciffed. If you use

polar coordinates, give the

palr of relatedtequations in cach case,

173 , . ‘
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1

N ) . J . ‘ ) K - .
\3&.\ A point the ratio of whose distances from the lines 2x +(y - 4 = 0 and

1

2

2

2. Apoint 5 units to the left of the y-axis. ,

13

19. A peoint no more than 1 wunit from the y-axis.

5,2’

1. A point 3 units above the x-axis.

. A point equidistant from the x- and .y-axes. .
' ~N

3
4, 4 point twice as far from the x-axis as it is from the y-axis,

5. A point =a units from the origin. . * ' .
6. A poinzr'a units from the point 63,-2) . ‘

7. A pointAequidistént-from (3,0) and (-5,0) . | ' -
8. A point equidistant from (2,3) and (5,-4) ., .

o 8 . . B .
9. A point equidistapt fraﬁ the. 1ines with equations x + y*=-2 =0 and‘

X+2y+2=0. . .~

0. A point whose distance from the line with equation x + 2 = 0 1is equal
to its distance from the point (2,0) . -

“11. A poingﬁwhose distance from the line with equation 2X +y+2=0 1is

. _equal to 1ts distance Irom the point (2,-1) .

2. A point the sum of whose distances from the points: (4,0) and (-4,09
\ ' .
is 10 . . ’

3. A point the difference of whose distances from the points (4,0) ®and A\
A , A : /
(-4,0) is © . ) .

t

3 -y+1=01s 2 to 3. A .
5. A point that is contained in the line t@rough the points (-},2) and
(5,7) . T d
6. A point, the product of'wﬁbqe distances from two fixed points is a con-
stant, (Thig locus is called (assini's Oval; it was studied by Giovanni

Domenico Gas ini in. the late seventeenth century in connection with the

motions of the earth and the sun.) : ~

-

‘1. A potht within 3 uniﬁsfaistance from the x-axis.
1
. i
8. A point at least 4 units distant {rom the origliu.

L]

20, A point no more than 2 units from (1,3) .

L 4 H
1. A Foint no nearer to the origin than it is to the point (0,5) .
-
N

2. A/point no nearer to tge origin $han it is to the line y = & .,

* ]

\l ) | ' )
\ . \ N 19 174 . .
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) 23.. A voint nearer to the origin than to any point on the 'line x = 10 .

2k, ‘A point between the lines x =6, x = -6 , ‘

Iy

25. A point within a cirele with its center at the origih, if the radius is

- "8 inches ¥ l:% ." (Note: This notatioﬁ, freqéently seen in drawings

\Fnd applications, means here that the radius must be at least 1.92 inches
long, and at most‘ 8.08 inches long. We sometimes say that there is a
"tolerance" of 1 % of the stated dimension.) ' .

5-3. Parametric Representation. ) .

i

'T‘f -*1In déscribing ihysical phenomena we customarily"éimplify matters; for:
éxample,\i &ar on the road becomes a point on the line, 1In &asbribfﬁg any
motign it

iszconvenient to say when, after some-given instant, a particular
event occurs.: This is indicated by a value of the variable, t . If the -~

motion takes plave gn two or three dimensions its apalysis may be made easier
by considering oné‘dimension‘at a time. With a rectangulgr coordinate systém‘
we then describe that part of the motion parallel to @he‘x-axis (the

x-cOmponent ) by indicating how it alone chinges with resﬁéct to time, éay

X = iﬁgt) . Similarly‘we may have y = f,(t) . Such a sot of equations, in.

which the two ccmponenté of the motion, that is, thegvalu s of the two vari-
ables x and y are given in terms of a third variablezjz , 1s an example of

what is called'a parametric representation of the motion. It is interesting
‘ b 3

o noﬁé that the tracking of satellites is actually done in~this way.

Example 1. Two sfudents observe the motion of a tall rolling down a

tilted plaﬁé. The plane has leen coordinatized as indicated. 1In tﬁis {1lue-

tration, as 'in many physical problems, ~ ( ' A D

the variable 't , representing time

elapsed since a given instant, is used ' c ) ’
. as & paramefer or auxiliary variable.

The use of & parameter is of'ten of

‘great value in simplifying the presen-

tation and colution of phydical problems.

In some proble&s it mny be useful to use

twvo, or even more, parameters. .

.t
Mne student finds that with sqitable

. -~
units he can deascribe the motion relative
s , 4

, o - . )
to the y-g}is with the equation y - 3t . ° Fighre 5-H

. +
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-

He may have cche to this conclusion by noting?‘with the use of a stop-watch,
the y-coordinates of the points on the lines parallel to the x-axis crossed by

the rolling ball.i& succeesive-seconds.' The other student, using the lines

.+ parsllel to the y-axis in a similar wa;g finds that he can describe the motion

®lative to the x-axis with the equation et . These are the paremetric

equations‘of the motion.. If we waﬁt to e\ Tess y in terms of x , we may

eliminate t between these two equations &nd obtain Yy = %x . Since t 1is a

measurg _of elapsed time it is nonnegative, hence x and y are also non-
neget ;. Therefore, the graph on the xy-plane will be a ray of the 1ing

whose equation may be written y = % .

2

[
-

. Example 2. A plane, flying at" 120 miles per hour at an aititude of
5000 feet, drops a package to the ground. Assume thht the package remains in
one verticdl plane- as 1t falls, and, neglecting air resistence, determine its

-, ,

path to the ground.

AN

Solution. We must assume certain conditions. If, at the moment of its

) releese, “the peekege i{s moving forward at 120 .mph (= 176 ft. per sec.),
then it will éentinue to do so at the same rate, whatever its vertical motion -
may be, Under the stated conditions we assume that its vertical motion 1is

described by the formula 8 = %gmg , where t represents the elepsed time in

seconds, g 1is the gravitatiénal acceleration in feet per second per second
(which we shall approximate as 32) , and s 1is the number of feet of free
A,

. . a
-

t
We now coordinatize the vertical plane, taking the point of release as
the origin. The positive sense of the x-&xis indicates forward motion, and

the positive sense of the.y-axis indicates downward motion.

. . R
» S ) .
! *
.

Q.. ‘ 11 176
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Note that the grid on which the locus is drawn has been presented in a
non-standard way, to make the diasgram easier to interpret As the package
moves forward in space the corresponding point on the graph moves right and
crosses successive vertical lines in successive seconds The vertical lines
T oa equally bpaced because Jhe Horizontal motion is uniform: x - 176t . As
the package falls the corresponding paint on the graph moves down on the page,
crossing successive horizontel lines in upccessive seconds. The horizontsal
lines are not equally spaced tecause the vertieal motion is not unffoﬁm, but
gcecelerated. The spacing was_determinmed by succes ,ive values of t. in the
formula y - 16t° - The scale is the same on both axes, thus the diadram is.
.not only a graph of our locus, but‘also a plcture of the actual path. '
-. < v
. .
pay
. ¢ /! . i‘(
Q

176 352 \528
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| ‘ If we had plotted points on a' aif- .
.ferent grid, sa; the ote to ghe right,
. in which the horizontal scale 1s differ-
“rent frog the vertical scale, - then ‘the

graph -would still be an accurateg repre-

sentation of the relat¥onships among °
~~the variables, but it would not be an %\ 200 z N

accurate representation ef the path. 280
Since we use the word path here in a soof-
specia.l way, we define it to be the seb,  seso . 1 ‘ \
of positions actually obcupied by & \\ 400 — A
\.real object as it moves in real space. . 4s0 : Q' :
. \Cleariy, & path may be represented by “ 800 il . ;\\
a curve in a great nugger of waﬁt?r ' ‘Nuo - -

AP ferent c¢hoices.of coordinate systems, e00}— 3
. ‘ ‘

In many éhyéi&&}‘problems we are ; yl Figure 5-8

concerned with the relative positions p . . ) :

of objeéts as they travel on their ~ T g *
requctive_paths. ‘If the bat 1s to hit the ball, it is pot enough for their
path§ to cross, dhey must be at.the crossmng point at the same time. Ships!
'paths may chss safely, but a collision course wopld bring them to the same
pcinﬁ at the‘same moment. The captains of two éhips at sea are conterned with
when and wheré\the ships.are,closestvto each other, When we must consider v
time and position along a path, we neeq some relationship involying these .

quantities, Th®se are most readily presented in parametric form.

.~

. Exerci%es 5-3 . LY .

1. Refer to FExample 1 and make a chart 1lke the one below, showing the x

.and Yy coordinates fot jqﬁegral values of ¢t from t 0 to t - 10.

. <[ ¢ o |.1 > by oy ol s b ! 8 9 |10
. o FA_ ‘
. | It
1 ' : /
1 ) y "4 o
\e e * - E]
2. Msoke a similar chart for Example 2 of this section, .
« - . -
3. Efite parametric equatfbns for the positlon of u point P ‘fx y) which

starts on the y~-axis and moves across-the plane at. the rate of' o unit§

g, second, and remains always @2 unlti above the X~axisgy

3ty




E : .

.. k) Write nﬁ.rmetric equations for‘ the position of a point P = (x,y) whichg
' starts 'on the x-a.xis and moves uniformly on thex«pla.ne 8t the. frafe of 2
units a .second, and remains a.lways 6 ~units to?he Ieft of the y-a.xis ‘

LY

5., Write par&metric equations for the position of‘ \Boint P'= (X,Y) ich
starts at the origin, goes through zhe poiqb (3,4) ten seconds later,

angd continues to move uniformly along 1ine OP at that same rate’ across
) ]
. ’ the plsme. Fin§ recta.ngul&r equations for its locus. .

(O ‘f Q . & ' . \\ .
. te para.me‘trie equations for the pOeition of & point Pe=. %x,y) "which
R " uniformly alohg a line across the plane and t&‘kes 5 secomis to,

S gorom -61) to (1,25) . ' ' o A

. N .

T T Pa.re.metric equations for the path of o point P = (Xy) are. x =t ,-

2

4
.y, - t s, \'rhere t indicates timé ln. geconds. Discus the motian of the
Vi point in the first ftve Seconds, Make an estimate, correct to thé nearest
Tl anit, of the distance travei‘ed in that time.

} 3
-

_8. A point P + ( ,y) ‘travels along the. ﬁne represented by bw -3y +2 =0
. at” the *uhif‘orm rate of. 10 units per ..;econd and passes through (lz )
wh‘en‘ t =3 . Write pgr&metric equati'on‘ for its pouition at any time

v - t ' Find its position when t = O, when*® .t = 10-.
& . L : 4

. 9. Apoint P - (x,y P travels mlong the.line represented bye 2x + 3y - ba= O
= at a unifarm rate of 5 units per E‘econd and cross'@s the x-axis at the .
. » :
) .‘ time =0 . Write parametric equations for its position at - any time :
'- r t . .

-

¢

‘ ‘10'. A point E’ =" (x ,5}) moves' uniformly on, a‘line across the plane, By goes

‘1

° .-

through (a b} at time LO', and. (c,d) at time t. .. Write parametric
- -

R e Sdustions® for its position a.t‘ any time t . L ‘ ¢
- 1 . -

c ‘7 11. A point if moving along the x-axis, its position ap time t . (sec) given by
x =.008 t K Bei‘ox‘e you-do @.ny com;qt,atlon try to desgribe the way the ‘
LR St point Moves . - The eosine fpnttion is frequemtly associated with -angles

“ amy rotation,’r ut thf:re is no fueh motum h€ re, We muf'i; now gse the N

v \ “eo"in.e as a pa.x't;u:lar real rmmne} ftmct,xon, “whose values, fo omain
- '\ l 0 < ', 1 ‘0 are given in Tal 1e II ) the hea ting " adian me&fu:e for .
that tab le 1ndlcat&3“ the .mb° ‘requent. but by no means the only use for
. a &thes?e trigonoﬁmtric function Make” a, ,tatle forr the’ pcuitionq of the ™,
..o point fch firqt, 10- vet‘:o?}n, .at one <‘econd intervalu How would you
Y

3 {
find She posit'ion of .the poi at the end o'f ofc minut,e-? one "hour? —

« £
A -
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}2. E'he vei‘t'ic'al' ‘s.ition of a point is givenby ¥ = 500 - l‘6t2 where* y
repr?sents alt™Aude in feét and t ei&psed time in seconds. Beforg you
do any computation try to describe the motion of the point Do you know
any phyuical interpretation of this motion? Nhke a table of the positibnv

« .of ihe pointt at .one second intervals, for the first 10 seconds.

13, Refer d:o the previoue* exercise, and ans wer the se.me questlonq for the

1 ;.
T relationship f'y_' 120 + 6ht - létg e

14, . Refer.to Exerefse ll;.sﬁ&-answer.tﬁé“same questions:for the relationship

. X = L4 sin 2t . Ve .

15. Refer to Exez%:is‘e 11, and answer the same. questions for the relationship

.

X = - cos t-, ) *

« E . ‘- . ",\ ’!.‘ . - o '
16, If the*‘peints of Exercises 11 and 15 were on the Sume - axi.}, find & time
\ .
' and place at which they meet. _ . !
- - ' e .
5Lk, Par&metric Fqugtions of the Circ.le and the Ellipue.. ’ _‘ . g

In many phyqical situat? (mr an 1mport&nt role is played by, a fixed re-
ferenc.e point, such as a source of light or radiation or & magnetic Pole. - The
assoclated phenorglena,. sometimes called foecal or radial, can be des vribeci with

‘pols.r.coordinatles or vectors._ We should use the coordinate sys bem and para-
.metex"s‘ which seen appropriate. When rota'ﬁionf* are Involved it is usually

helpful to use as a parameter, 6., ‘the measure of the .angle of*rotation from

a fixed initial position.. . ' ' )

f . PR ) o '
Example 1. A point moves around a‘circle at cagy fam speed, Find analy-
it it :
. . F ) X . .
tic-conditions for its path, : vy : g

P
-
s -

Solut.ion: Suppoi:e, ac in the ' ‘
' gf%agram,t,he point starts from A and ‘
moves counter-qlockwi se, Its pos ition:
at-any point ' is given by the

rectangular coordinafes  (x,y) , or the

f D ‘ . : X
‘( t’qu.ivalent:; (recos g, r REFAS 6) ; that .
18 B ' ‘ v
. . : ’ . T
\ {x corocosn 6 e .
. , . L2 ...
* y - rsin 8.

F .

v : \ . -
‘xes.e are parametric cquations for a

-~

Figure -9

#. circle. "

\ ) \'-': K . ’ Coe
\‘l -‘f . . " ’_.l \ L L . 'f .
i -, PR 1‘-’ )’ .. - -~
ey , ’. ‘ '

)
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; AN g
' We may express the fact the point.moveé around the circle with cénstant
speed by éa&ing either that it moves flong the circle at so mahy inches per
second, or that the radius OF _rotates about O at so many reévolutions per
minute. Of course, other units may be used. The first method bf'expréssion ‘
is important in mechanical problems involvihg, for example gearing, belting,‘
rimspeed, and so on, The secaond method of expressing constant. speed vhich
concerns the amount of turning done in a unit of time, 1is signifimnt in
.timing mechanisms such as are used in automatic washers in electrical theory
'involving alternating current which is relate‘d to the positions\ﬂf a tur,ning\\
,-'a.rma.ture, and in the ana.lyu " of many other phendriena which are periodic, tha.t

is, which repgat in successive time interval.,. T ~
. AR >
In this Jatter interpreta.tion it is customa.ry to use the Greek letten K

to represent the angular velocity, usually but not necessarily 4n térms of -
| radians per unit time, l‘hus, if a wheel i\j turning at thefrate of -300

revolut'ions per minute,’ it ‘has an angm]'fr veloci ty of 4 (300)2r ra.d‘}ans per

minute or 1lOr radians per seccnd that is, 309(‘&'pm) y OT = 60D

(ra.dla.ns/minute), or w = 10x (mdians/secom‘)

If the point P ha,., con.,tant angulasr veloc.ity @ 5 then its l\gu},ar
position €& 1is given by mt . The panametric equa.tions above become

¢ P3 -

8 . ¢ . c

If we eliminate the parameter,by squaring the members of eacﬁ equation a.nd

}
adding the’ correuponding members of the new eq_uations we obtain |

;) oo s o) i) * L ‘

{
|
l
I

" they coincide.

 time from diametrically opposite positions and travel in opposite

.o ] -
. . : RN . € - ,
Example zv,* Two points travel on the °ame cigcle. They stqrtLat the same

irections,

! .
iF,ind analytic conditions for their pat,hs], ang the times and positidns €t which
- . . TN C . ‘

_the firot at & rotations per -sccond, the second at 3 rotationslper &ecpond,

“ N - Q\
[ - ' . . ¢

. e ..
' x = r cos wl . : -
# . { -~ R ’ “) ' . -
- Ly = r sin @t . -
These are el;uations of the path of the point. o o P

x“+y -r (cos wt + sin’ cut) , or %+ yo o= r‘ . is re ese%nts'the locus
of the path in rectangular coordinates and no mnger takes a unt% of the posi-e
rtion of the point at any particu@ar instant. . -, .

W

) . - - / s

|4 ot 1

kl solution, &fer to Figure 5 9.) if ~t:he f‘irst point starts at: A -_—}r,o),
and goer:' counterclockwise, its equations are ' 1- - \

§ . -~ . . [ h * .
‘ .X —'r cos bxt : . .
| { B ‘ ) L o \ ’

) y*= r<in bxt .- ,

[ . . -

_ ‘ _;‘ ._ 1{'6\181 .‘ C ;\tﬁ




"If the second pdint starts at B = (-r,0) , and goes clockwise, its equations

are C ‘
< f _ { x =r cos(n - 6mt).,
if c,ly =r sin(x -~ 6xt) . '
‘J‘ N - \ o . ¢ . ‘ -
2 L
™ If t =0, the position of A is given by (r cos 0 , r sin 0) ; there-

‘fore 'A.= (r,0) , a8 indicated. At the same time (t = O) , the position of

‘B 1is given by (r cos n , T sip ‘) ; thereforg B = (-r,0) , as indicated.

As time elapses, the angle for the motion of 'A increases, while the angle

. for the motion of .B decreases. As A and B rotate, only their angular
positions are changing, and the rates of these angular displecements are Ubx
radians ﬁer second and -6n radisns per second. At any inspant the difference
of these angular displacements is called their angular separation. It is
cquumary to give this angular separation as ‘the jeast anglg between the

respective radti to the points. Thus 've use an angularvseparation of .g

radians rather than( 13.5n radians.

. Since our two points start eith an angular separation of ln', their first
» meeting will occur when their'anguiar displacements from their sﬂaitihg posi-
tions add to, n ; that is, when Lxt + 6nt‘; ™;. &t =.1_second. Suceessive.
meetings will occur after this when .,their additional angular diaplacements add
to 2, Uy, 62, ..., i e., vwhen  Lady+ 6%t = 31 , 5n , Tn , .. %, 1.e.,

when t =.3, .5,.7, ... . That is, they pass each other in .1 Bsecond,

it

and every .2 second thereafter.

2
To find the corresponding positions, ve need only substitute these values

rfo{ t in the equations of motion. It is simplest to obtain first the suc-

deseive angular pasitions 8 B, 9 +s., for tﬁeir passing points.

L’ Y
. L) ‘2 '
: . B . . P o ] - -
If ‘ bty =, B - .?n'~ 72° .,
Ir e 1.8 =269 .. . P
. . N . “ o : A . ' R
- . - t '_: -r ) . =D - 600 .‘ ‘. . ‘ R -‘
A ST 6y = 2n - 3 . R

[ ]
‘ The rectangular coordinates of these positions are. given, say .for r = 10,
v by P = (L0 cob (2 , 10 sin 72°) 3 P = (10 cos 216 , 10 sin 216°) ;

f Q
PB = (1o~cos 360° , 10 sin 360°) L. . These are equivaient t
> (1.9 309) 1of. 95%1)) (10 809) , 1f(-.5588)) ;-(10{1} , 10(0))';
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i " ‘ .“.A. .« In usual rectangular fom, *munded to’ hundredths, we hs.\re- |
=(3o9951) ~(809,-;88) 3= (10,0) 5 ... . )

¥

}bcaJﬁple 3. (Reier 6 Ex&mpl 2, above,) Siippose in the pféviotis éxa.mple, )

“the points start as before but travel in the same direction, Vith the same re.tes

as- ‘before. When and where do they pass? T : ‘ .
? .
Solution, The equations of.motion are ndw: T
/ X = r ¢os imé, o X =r cos(n{{mt‘i,*'
’ : and S . ‘ ‘
. Ay = r sin bxt; y::rsir}(u + 6nt) L )

The meetings (or overtakings) will take place now ‘ten the difference of

theizp angular di ,placements is ox ,bx , 61, ... . The first meeting will
N . ;

take place when 5 + Ot o f&gt = Py j that is, when t,= .5 sec. After this,

successive meetings will occur_when & Ogtoe bnt = by , 6x , B, ver. }
that is, when t = 1.;“,1 D5 s 349y eee e ‘To find the correspbnding angular
positions we proceed as in the previous problem and find e‘l‘.; n 406, =*6n ,

etc.; that Ls, all overtakings will téke plaee‘ 1 second apart, at point A,
starting &t the end of the first half-second. ‘
R N - . « .
Exafiple &, A point is rotating uniformly c;%a circle gf* fadius a , with

1ts center at the point (b,0) ® Find analytic" sondltions for its locus.
Solution. Suppose the uniform dngular
velo?-it:y, exprecced in radtans per second,
is @ . From the hypothesis and the - oy

N

dlagram, we huave . .

(X~ b +8acos b, X - b racos wh,
{ {y atsin gt

Yy asingjy

These are paramelric equations for the

* locus. The.first equations are posif . .
tional only, the necond equetdions relate

) -Lhe.ue positiom, to time- axfdescr:u)e the: - ) .

paph ofv the polnt., : ] , .
. : T ‘ g ’ . Figurd 510
‘7 We may eliminate the parameters o and -t . ' . .

' : ‘ Lt . . .-

X - i . . -
+ ! = cos‘mt s _‘{ uin wt‘ s 0+
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.. . 2. 2 ' .

- therefore, (x ; b) + (lar.) = cos® wt +sin- ot = 1 . ‘e
\ : ‘ ‘ . : i
or : . (x - b)2 + y2 -a® ..

This last equstionlis the one usually gfven in rectangular coordinates. It is
an equation of the lpcus of «the point and takes no account of its position a‘c i
any particular moment.

‘I‘he ellipse sill be discussed in detail in Chapter 7, but we derive nm.r
ite analytic repres ntat\ion in pare.metric form. We start with two concentriec
cirr',les, the smallest that will enclose the el_lipse, and the largesi that the
ellipse will enclose, as illustrated in Figure 5-11. Suppese their radii are
® and b with a >b . We describe now a way in which a draftsman can locate,
as many points of the ellipse as 'he needs to draw a sm’ooth curve through them.

Draw a . e through Q , meeting the circles at A and B respectively.

Through A B the lines parallel to the y- an es respectively will |
meet at point of the ellipse, "For all o hgve x = d(O,C). =8 cos ¢ 4
. -

and y = d(C,P) = d(D,B) = b sin.o .

The equations dre - . I B .
' . { X = 8 COS @‘ R e
. Yy =bsinae ., \
. We may eliminate ¢ as follows:

e

X _ A
E-cos€bgb— sin ¢

ra
L}

“)

>
%+§g'-cos ¢+sin @
Y

i
o
-

’5&2 . -
+?=1,. . . ‘ ’ \ '

3

i
.

)
H
s

which Is the usual equation of an ‘ | Flgure 5-11
. e.llipse in rectanguldr coordinates. Note that the parameter ¢ used here is
not the angl‘e between the positive part of the x-axis and the radius vec,t,crh

« OP to the paint P ; that is, it is not the angle used in representing P ing

pcle.r.coordinates. T v B ‘ .
It shouyld be chogniz.ed that we vﬂ‘é&lect & parameter in various ways to

. Tit & variety of sitpations. There is never a unique way to do this, so it is

..Inaccurate to refer to "the parametric equations of ...". Rather, we have
"a parametric representation of .."with the understanding that, we‘have ﬂ!de

; « Lhe choices of comten/t, and varigbles that best sult the hypothesls and our

. plen cf-approach to he sclution. . f ‘

!
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“ ¥ Bxercises 5-4

1. Write parametric equations fo‘r,a c¢lrcle of radius 10 and with center at
the origin, o : f e

- 2. Wrlte péra.met_ric equat-ions for the path of a point around the circle of
Bxercise 1, Assume that it starts from the 3 otclock poéition and
rotates tlockwise at the rate of & revolutions per second. »

‘3. Write parametric equatioms for the path of a point at the end of the
minute hand of a tlock during one hour. Assume the length of the radius
to be 6 in,ches and that the point starts from the 12 o'clock position
to which we assign the numbers G and 60 . Use minutes7as meabires of

.
-

/L time.

s iWu&tioﬁs for a circle with center at (0,6) and radius -

L . ) B - :

' ) . ) ) .

6. Write p9émetric equations for the path ¢f & point moving around the ¥ .
circle/of Exercise h Asmﬁ&@t it Btarts from its lowest point and —

/ [ 3

moves;e‘ clockwise at 2 by of]

\

e Wri/ée pa tric equati.cms for the path of a point moving around the

\" © T cj;/rcie of ¥xercise 5. Assume that it starts from im\ highest point s:nd

nioves counterclockwise &t 3 rps .

e
/ —r ¥

A}

Describe in words the motion of & point whose path has the parametric .

/ -~

)
ations given below. Assume ,t dgnotes.elapsed timg in seconds.
L] / ‘ R ] - -
{x = L4 cos nt , < . . '
"y = 4 gin gt , . ﬂ:
) - [ '
x:Gccs«(ﬁt«}-%), s E
-~ ) i _‘.
y = 6sin (xt +%-, ' ' ‘ -
2 . . f
10. x = 8 cos {n - 3nt) s L . -
{y=851ﬂ(ﬂ-3nt~). ' ' _ .

. , M f .
+ 11l {x = 10 cos (ég + 10nt) , —~ .

£ 1ont) .

' 3n
. 1.5) siin (T
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(a)

(e)

(f)

y =r + g(cos 2ot - a),

=k + cos*bnt , ' - ;
= sin 6t , ' '

= cos Brt , - / ' <
= -3 + sin Bﬂt

=2 + coa—lEnt,
=5 + sin 12xt

=a +bcos 2nt, | ‘ o
=¢c + b cos 2nt, - ' L -

=p + q(cos.Enﬂt - Q)’

4

equations of motion of a point moving uniformlywen s circular path are -

H]

{ x = 6 cos b, - " “(t 4in seconds)

y = 6 sin bxt,

Describe its motion in words,
Make a table showing the coordinates of the point at the times

t =0, 1, 2, «os 5 1.0 second. v

A second point travels on the same circle in ﬁhe‘éeme*difecticn at
the same rate, and starts at the same time, but from the poin{‘:‘"on
the y-axis above the origin. Write equations for its motion.

A third point starts. at the same time and place as the first point,
:bqt travéls in the opposite direction at helf its speed. Find
equations of motion fo:athis third point. : .
Find the times and places at which the third point meets the first
“point, as was done in Examples 2 and 3. -

Find the times and p}aces where the thir? point meets the second

-
-

point °
N

Three bicyclists, A , B, C are equally spaced around a one mile circu-

lar

track, (say at the 8 o'cloetk, 4 ofclock, and 12 ofclock positlons,

‘ respectively). A and , who go clockwise, can ctfele the track in

j minutes and 4 minug\s respectively. C .y who travels dounterclock- .

wise can circle the track in 5 minutes. They start at the same moment.

(a)

(v)

<

Write equations of moticn for thelr angular pasiti&ns.pm the tracdk
«at any time\; after they start. L
Find and illustrate their positions at the end of each of the iirst

10 minu&es. ' -
Determine the firs§t 5 meetings; who meet; when, and where? i
When and where do all three meet, if ever? . .
' , w 186 . . | k/
) % . ‘ : :
- .
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'NY. A polnt s s at A (Flgure 5- 9) and moves aounterclockwisg at 2 rps.
A secoanii:it starts at position § , which you are to,find, and, moving
clockwise at the same rate, passes the first point each tlme they cross
' the y-sXis, Write the equations of motion for this second pointf
20.‘,F;;r points,™® , Q , R, S are equally spaced around a circle (Figure
'5:53,’§ith P at the 3 oTEYock position, Q fat the 12 o'clock position,
R at tgi 9 o clock position, and S at the 6 o*clock position. P and -
Q move~nountercloékvise, R and S clockwise. They'start simultaneously,,
and all meet for the first time 10 seconds later at the 10 o'clock
positich, |

-

‘ y ‘ .
e (&) Write equations of motion for each point,

. {(b) When and where will all four meet sgain? ' ';5 P
, e
5.5, Paragetric Equations of the Cycléid. , TR

A curve frequently encountered in phy51cal applications ib the cycloid

We introduce it in an example. //

.

o ' Example 1. -A vhgei of radius a feet rolls in a straight lipe down'a

flat road. Find'analytic‘pondiiiens.fdr the path ot a point P on the rim of
. hy

‘the wheel, ' <o : ’
A - o

-, « .

Solution. Somethingﬁ-perhaps years of experi%nce--suggests 8 parametric

. répresentation,

. _ a sin ¢ : (2an,0)

& ' ..

Figire 5-12 3 s :

4

sy
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A

Iet the line along which the wheel rolls be the x-axis, and let the .
origin be a point at which P _ touches the road. Let the positive direction
on the x-axis be the directignxln which the wheel is*rolling. Finally, let ¢~
'be ‘the radimn measure of the angle through which the wheel has rotated since

P toﬁched the road, with ¢ posiEive when the‘cenker of the wheel has a
positive ébsgissa. Since the whegl 1s rolling, not slipping, the length of
0G is the'same as the length of gﬁ . The definition of radian measﬁ;; gives.

this arc length as \a$\‘ Hence,

( .
{ x = d(0,J) = 4(0,G) - &(P,H) ==f - & sin ¢ , . .o
\y = 4(P,J) = 4(c,6) - d(C,H) =a - & cos & .
We rewrite @hese‘ﬂ&g&p&tric equations of the cycloid - ,
(1) Xe= a¢ - & sin ¢ , | Qr< { x = a(¢ - sin 0),, L
. ‘ ¢
{y-; a -acos ¢ '; = a(l - cos’d) . . \\\\\ :

If the wheel were rotatiﬁg at the rate of ¢ radians per second, then

-

. ¢ =t and Equations (1) become . .
+ ) T A
{ X.= awt - & sin‘wt , ’
(=)
Yy - &' -a cos W o.

L] . ‘

. . .l .
a : wwsm ey e e -

. -‘ "
Exerciges 5«5 y

'

PAl

* : . ' " .
1. A point P - (x,y) on the rim of a wheel with a & inch diameter traces
,&.q\¢xq{pid‘as the wheel hrolls alongs the x-axis., Write parame@ric enuations
for tne lecus of P .0 Find rectangular coordinates tfor P, correct Lo

< . . Q - 0 P
! tenths, corresponding to values of 6 from O to 5607 at intervals

kI8
0 ‘ " \ .
cdtt 507 . Marke a caretul drawing of the grapi.,
od 3 .+ \!1 v . . ‘-
W, One.arch of a cycloid will Just fit inside a recta e G units high,
How wile s thal xgq&ang}ef Choose suitable axes and thert write para-.
) . . - .
. metric equallons tor the cycluid. . ’ ‘
- »
. « 1 & °
e A whnel withh a € inch digmeter is rolling alung_’fﬂxr:t-, rotatlny A
cee—s times per seoond, - R .
: o K ! ’
) Q wﬂ- . -
(a) rhoose a suilablq coordinate system and wrile- paramctric ejuations
At the moTion of a point P = (x,y) on the rim, . 8
. . L ] .
. (v} Fimd rectancular cdordinates for the positigns of P at times
. Looowl, W0, o, Wy N
() Figd the time and place at whi P fimcty reacnes & high podnt on
ite path,
i L




An automohile trawvéling along a straight and level road at 30 miles an .

hour has a wheel whose duter circumfere*;: is 66 1inches.
\\

(a) Make an accurate scale drawing of sffe arch of the cycloid traced by-*

‘a point on the circumference.
(b) Choose a‘suitable ccordinate sygtem and “write parametric equations
. for the mction ‘of a point on the rim of the wheel Use a minute as .

& unit of time and 8s an § roxfm&te value for =n°
PP .

. -
< 1 \
- ’ ~ . . -
, .
N

oo : -2 . :
Challenge EXercises Tor Egctions 5-3, 5-4, 55 .

. {Refer to Figure 5- 12‘) If, as in the -case of a cycloid we eonsider a .
vheel of radius a rolling down a straight flat road we may consider the’
path of a point P not on the ‘rim, but along a radius TF , at a distagge
of .b 'feet from the center. We distlnguish two cases: b > a‘, and' K
b <'a . The locus‘in the firgt case is called & prolate cyecloid, and

‘in the second case g curtate cycloid., Figure 5-13 illustrates 2 case
which leads to a*prclate cyeloid whose parametric equations you are asked

e

to find. A part of the graph is shown in Figure 5-1k, ‘ .

ot ‘ . Figure 5-13 _ N

[ ]
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This figure 4)lustrates a case in which b =g.5a .  (Can you find the
ordinate of the‘point Q 1in which the gmph\\qut}s the y-axis?) The stu-

" dent is. urged to consider: the cases: b =2a , b= lih , and to draw

"the sum of the measures of 8 , ¢ ,

‘with the special cases &_=Db ,

some geheral conclusions.

'Ihe eftate cycloid. (Refer to Figures 5-13,- 5-14.) PFind the locus of a

point P on the. radius TCF* of % circle as the eircle rolls'.along a line.

- da(c,P) =#b ; i'adius = af¢c,F) =a , and b <a . Choose & s;lif.able co-

ordin&te' system and draw an arch of the graph ,of a curtate cycloid for
the case . a =6, b =L ,

A circle of radius a- rolls, without slipping, on the outside of a
circle of radius b . . Find an analytic representation of the locus of

- & point P on the outside circle. : .

g »
Discussioh: We 11lustrate the .
case a <b , and suggest. these
' ' V)

relations: length of AB = length

~~ .
of PB, . a%® =Db8. K

. L] .
C = _((e. +b) cos 8, (& +b) sin 6);

- - '

. N

_4’ is

or 90() H B

d(P,D) = a sin ¢ ; d4{C,D) = & cos v
We urge the student to experiment

N ES

a. = %b s 8 - %b . Such curves ,
| , . Figul\ 5-15
are called epicycloids and have {

application§ in astronomy and in mechanical eénglnedéring. ‘e

o - .190 /
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[ : . o . o : - VY " | ’ . .
. i - ’ ) .

S _ 4 : .

| A 'uf, (ﬁefer to the preéious‘probiém.)» A circld of fadius a rolls: without
slipping, on the inside of a circle of ra.dius b (& <b) . Find analytic
representations of the path of a point P on the circurference of .the
inside circle. 'Sgch a path is called a hypocycloid., THe student is urged;‘

. to experiment with the special cases a. = Eb s & = %b , B = ;15‘0 . In both

* ¢

thie end the previous exercise ‘the student is challenged to answer thie

~——

. question wi.thout performing the experiment: TIf a = ;?jlb a.nd we ma.ke a "

complete ci-rcuit how many times has the smaller circle rotated on its own
. 1 ‘.
axis?, . o . C - .
_ ] P @ ) -
5. ‘A circle of radius &  has as center € = (O 8) . A chord is drawn through ,
any point D = ( 1,31) of the circle and extended to meet, .at Q s the

tangent to/hepcircle ~at A , the

" ende of the dismeter from O . ﬁﬁ - & N
' {s drawn parallel fo A0 , and a ‘ : 3
line is drawn,from D p&rallel 5 B (
to :ﬁ, and intersecting QR Wy
' "p=(x,y) . Find equatjons of b : X
the leeus of P a.s the point D . - ,\? -

Figure 5-”16" ) -
moves on the u.rc.lé Sketeh the .

~ locus. '(Thie curve, called the gitch of Agnesi WBS studied and named by

a mathematicla;z of the eighteenth century, M&ria Ga.etana Agneei )

6. Find &n equet/ion of the locus ‘of & poini which moves 5o that“the sum b
the squares/.o:f‘ its distanees from two fixehd‘ points is & constant, which
we call 2&2 « Describe and sketeh the locus.

. ‘ i . .

T. Find an equetion of the locus of a polnt which moves so that the sum of-
the squares of its diste.nces from the verticts &f s square is cons‘ta.nt. '

Pescribe the ldeus. ‘ . .
. & : ‘ ~ .

. Find ap equation of the locus of & pcunt w&ich moves £o that the sum of .
tie squares~oi its dlgt&ncee from the lines contalining the sides of a

square is constant.
)

9e , A line drawn parallel to the side AB of a triangle ABC , meets AC in
D, K in E. The lines AE and * BD meet at P , Find #n equation
of theylocus consi‘stmg of all sxi,ch points P . (Hint: Let A"ﬁ‘ be the
x-axis and let C = (0,::5 s where c\‘> 0 . ,”Int‘mduce, as a parameter,

t , the distance between DE and the _x-a.xis.)
‘ ]
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;et 0 and Q be distinct points. Let L be a line through 0O and oo
let P be the foot of the perpendicular to L through Q . th% is the

. | locus of 'P a&s L. rotates around 0 ? (Hint: Use the slope of L as
a@'auxiliary'variable. Remember that some lineé dori't have’ slopes.* Does
Q. lUe on she locus?) . ! - 2 ‘ | o,

* . : .‘ N : : ) . ]
w 1. A cichE'of radius‘ a .has its ~ .

diameter OCA--aPong the polar
axis. - From O & chérd DR is

. drawn and extended to meet, at S,

the tahgent to the circle at A .

< and equations of the locus of

P,a point o, 08 such that ‘ -~ )
. d(p,8) ~ 4(OR) . Make B sketch of .

the gréph (Tﬂis locus.is & ) P -
Figure 5-1?

cissoid, a curve studied by the - -« P T ‘ . NI

Greek mathematician Diocles, who lived a century or so after BucTid. **You

. may,learnusOmething more about it when-you gtudy ;R%g;siqn later. .-
12, A fixed line ¥§; is Berpendigular ‘ R
to the polar axis'affpoint A,
urtits from the pole.. A line is

drawn through O ' meeting 35“%}

R . A fixed length £ is marked .

off from R on this liné in both
T, directiohs'loca‘&ng the points P

[ and P' . Find an equata@n in

golar coordinates for the locus .
P "and P' . (This curyq& T .
» called a conchoid, was studied by

the Greek mathematicign Nicomeden

about two centuries B, C. - Tt can
» 1@ us ed\Ln the tr13ectuw>of an e < .

angle’. Try to discover how.) ' '

[ ' - .

- Figure H-18 ,
- | . S v




13, 'Involute of the gircle. A string )

TR ‘A of no €hickness" isvrappedaround
' @ fixed circle; the end of the ‘
‘ »”
string is at A . We unwrap the . - 8 .
- . ‘:
string, keeping it taut, and tangent ‘L » -
. rele. (PF 1is tangent £ .
, .and d(P,T) =.length of - ‘
/AT), Fidd analgtic conditicns for * -
. the graph_of' P . .This graph is. - "
called the tf¥olute of the circle. . .
_ Try to\generalize this idea, and ; ) ,
> 'ske‘tch immlutea for an allipse s ' Figure 5-19 ' '-.. -
a parabala, e '» "Does every curve have an ifivolutet: mke some mechanical’
modeﬁ.s with which you can draw involutes. Draw tﬂe imlute c{ & s
. *
Ih, Suppose a-fixed circle with, radius a{ -is "internally tangent. ’co a c !g
with radius..b (b > a) . . Find parametrie:equations for it Iocua of &
. point P{ on the outer circle as the outer circle rolls around the inner .
_circle without alipping. y o) Y/ ‘.} T
\ e : t .
. - ) - l-' t . ‘
X { “‘: - ,‘l
® , |
. . . ‘ - , - . » “3 ‘
S a ‘
| ’ S
“ :. * . - .t ’ \‘
i ‘. ‘ - |‘ N * l( 'S
s f . . .‘ . . . " < ‘\ ‘j
5-6, §arametric Equations of 8 Straight Line. A :, . v

Parametric representaﬂiOn, which we found so useful fn the- complicated
\ casas of tie previous sections ¢ah be uaed to illuminate and” extenq the dis- v
cupsion dof the streight line. Some af the exercises of Section 5-2 have
"already introduced you to the ideas and methods we ethine now in more detail.
" The foundations for this discussion have already been develcped in Chapter 2,
particularly in Sectiqn 3, where we figd these equations¢ " J

‘-. - o ( | .{.x:x0+t(x -x)\ ‘ o
S AN Y=Y~ t"“’1‘3’0)' ‘ P
. 188 | ) .. -t .
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nnmbers obtainﬁ fm the ﬁord.tmtes of the point Py = (xé,yo) and

. = (xl’y.lf refore, \,m mpresent them respectivaly by \L and N, and
.. revrite EQua'hons :

-~

x=xo+£t

= yo +,;|nt. .

2

{

y

We recognize; 'thé.t t is a pa‘rémeter; and that these
d‘

L We recognize that the quantities xl - X5 and y‘l - ¥ aré direction

56

.
I
“

L *
equations are pa.ra

. —

.

. to be distinct.

~ L]

if‘ ¥y .=¥y s then x; # Xy

S

X

¥

4
1] , «

A

A parametric répresentation

' between the real nu‘mbers and the
below the co:;'responﬁences establi
found for the ;Line in Example I.

R KC

metf‘ic equations of tne line through the points P

l.’l » which e sssune

\

e

‘ If‘ X = "Q s thed y, “0 , and (2) takes the form N~
Y S "o “ " R .
s R G A RNt :
% —r T .
g o - . . y f.‘fo +Fmt - . . .

{What is the geometric version of this hypothesis and conclusion?)

2

, and- (2) takes the form
»

& -
;s C, ' x =X+ £t
{ ° ’. v ’- - / [
. ‘ - y =‘y0 .
. - B
(What 1s tzhe‘gﬁometric version of this hypothesis and conclusion?)'
.- [ Y »
r : .
. grilee 1. Find & pa.remetri.c representation of the line t,hrough (2 0)
and ok, 3) ~
‘ ] ' . 2 J M
.. ... _Solution: We cfn choose either point as P0 . If P = (2,0% then
- X5 = .~6, ¥y - Yo * 3 and we éet the representation s .
. . P el ' *

2 - 6t

! < or‘
oFu’ .

-

: The -other choiz:e for PO legfls to the representa-tﬂbn

. ' . ¢ ' 9 . . e
. K ‘ ) : ‘ ‘ {§ = -4 + 6t ’ . - )

l‘ B ) | ‘ y = 3 \— 3t‘ . . i

of & line sets up a one-td-one chrrespondence

We il}justrate
e

shed by the parametric representations we

R

points on a line in the. plane.

o
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ahd t sucftt;hs’c : .

£t =0

I;‘igﬁre 5-213 -

L S

m 2. Find t.he intersection of the line ‘hhmugh (h 2) and
(2,-4) end theline ‘t.hrougtp (-3;-1) and (.h 2) . (

.

Solution;‘ The lines mey be represented parametricall,y as follcwe' '

L. :

xnh_-?.’s_,-
|

y=2-6s."

2

. We wish to find all points which lie on

lies on both linegdf and only if there

x=k-2§o

y(:"é - 630 =

[}

] LY

.
-

A1l such values of s and t can be found by solving simultaneously the -

equs.ti ons N .

P 4

. ] o, 2 - ﬁE

The only solutions are s =2 , t = -3

of parametric equations, we find that the only point of intersection ia .

.(0,-10) .

, It would havé’oeen quite correct to use the sameg letter for the
pa.rameth' in the pardhetric representations of, I and L, "

would have led to difficulties later in the broblem Do you sedh’ Wy ? Ca.n

you find another method of getting ai*ound’ the difficulties? ’

I«i-‘28.=—3- t,

-l + 3t .

‘Y90

-

K::-S- t,

'12. y=-1+3t, °

.

both _lihes‘.A Now the point (x,y)

exist values 86 and t, of s
-3 - - t,- ' '

,
-1 + 3ty - . .

r .

Substituting these in either pa.ir oo

r, this

-

"llf)fi' - ) i.«‘ o




L]
Py
”
.

3 : ..
. In .p:e\rioue sectiens ‘ef this ehai:ter we related {:he parameter t to
. elapsed time. ‘In eueh cases the parametric equatiens gave ’us equations of
ﬁmtion of the point P . The greph of theee equations wask direetly related .
’t l ~to the ?ath of the point. Exnmple 3 showe ho% t@e approaoh can be used for

‘the line. , o ! *

.

. m'} 4 ball is roliipg along le level surface in a strajght line
. with constant velocity. The' surface is provided with a Carteéian coordinete *
. system with the foot-as the uniy of length. At 10:00 a.m. the ball is at
\ (4,2) while one second later it 1s at - (2,-4) . A segond ball, also rolling
along the level surface in a straight 9ine with a coneta.r\t veloeity, 1s at )
(-4,2) at 10: 00 a.m., at (-3,-1) one.second later. We ask whether the

two balls. will collide. In other words, we want {o know not whether their

paths intersect but. whether,- 1f they do, the two balls are at any point of ~

intersection at the same time. We aeeume » in order ‘to simplify the problem, ;'}
that the balls have zero radii And will eollide only if their centers .

colncide. _ _ . ’
- '# . ' ,
. Solution. The path of -the first ball is represented by.the equations -

‘ -

-

X=h‘-25,
{y 2-65- .

Further, if s 1is the number -of seconds which have elapsed since 1o:oo,é.m.;"
“the equetiéﬁs also tell us where the ball is at any time. for if we set o
=0 -(lO'OQ-OO a.m.)wveget x=4% and y=2, wﬁile if we set 5 = 1
(10 00 Cl a. m.) wve get x =2 gnd y = -4 ., Further, in s eeéonds‘starting
at 10:00:00 a.m., an objeet whoee motion wa.s represented by these equatiene
weuld trével .

H ' L]

] /(x - 4)2 + ‘y - 2)g =% + 36 s ='21/'1'0'_‘s"‘,: - Y

L3

) feet. Thus the distance travelled is a constant multipfe of the rtime teken'

-~
and the speed is cOnstarmt. Similerly, the motion of the decongd ball is
deséribed by the equations '. i ’

.

.-&'f“t ; ', ’ H :
E.T Bt .

)

o,

b 4]

] I
[l
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‘
i

Our problem is to find out whether the hbscissas of the positions of
_the two balls, asnd the_ordinates, dre tever simultaneously (s = t) equa.l.
g In other words we Q,. vhether the system of eguations '
- > 3

'_,.‘ i “ '.{h-2t=-h+t, | | ~

_ L 2-6t.~2-3t. ) )
' has & solution. Clearly noﬁ since this pa.ir is equivalent to t.he pa.irv"
| 3t =8,
‘ - ‘ {3t = 0 -
 Thus the balls do not collide. : S
] . ‘ c - b4 ) - ‘ . ‘. (. .
- If direction cosines aré used in & parametric representation of a line,
the parameter t has an interest.ing int’erpretatioﬁ. Since '
- !
)
P)=/(x-x0)+(y-yo SREL L —m,
£« \ . .
. the absolute value of the parameter is the di:t.ance of the corresponding
) point P ‘from P, ’ - Coe
ot <
* . v » ‘.
! “ l. . 3 -
. o . ¢ ‘
~ Example 4, Find, oh the line through P9= (1,5) and P, = (5,8) , two
paints which are 3 units distant from P, - o ]
3 . | )
.. N * = ' ' “
Soiution. Direction .numbers for POPl are (h 3) , and direction cosines
can ‘be taken &S (5 ’ ) /ﬁe miy then write: pammtric equations for . PoPl
* terms” of direction cosines as ! . } - .
‘ [} ]
‘. { N
A x=145,
. ‘ { ‘3
. ., =
9 . N Yy = 5 + st . ?
. The substitution” t = ¥ 3 gives the coordinates of both points,
4 12 C 9 ' . . )
. .i Q _i? , 5 3% -g-)f, or (3.4,6.8) and (-1.4,3.2) Lo
. ! . -
~ .




o o o Ekerci&eaj-s .

- ‘1}. ‘F.'Lnd two pmtnc xemesentations for each 11ne thmush one of t.he. |
- folloving pairs of points, u{ing eaeh. pair in both’ posaible orders. )

'(3)‘ ist'l) 2 (2}3) (e) (l:l) 2 (2)2). K ' :' i !.

() (0,00 , (h,1) () (-1,:1), (1,1)
, (C) (2 '3) 3((2)3) : 2(  B (S) (1:0) ‘:‘(0:1)-
(a) (-1 4) 5 " (-6, §) m) (2,-2) , (-2,2)* .

- Draw the gx:a.ph of each of the lines in mercise 1, plotting, on each,
the points correspdnding to the values -1 , 0,1, and 2 of {he

parameter. - ) _ - A A
Find the inte:raection of each of tb.e fol.lowing rs of iinés. Hhen the
‘lihes do not intersect, what do you notice e.bout t.heir equations?

(a) {x=5+5' . x =h -2¢ ’
. la-s : , ,,{tm_6-+3t ‘ )
oL xl=2 A3 T ' x =Ub +6t i
. () {y .;i‘_'_j:\ o a | {y -5 - bt .. -
p X =3 + 8 ° ‘ / ‘ (X = «2 - t v ‘
(e) {y' a-3s - {y=r-1+3t - ) .

'Find a pair of parametric equations for the line L with equat.icn P

a 3y‘ +? l = 0 »
let I have the parametric éq:uaticns ‘

. . R 'x=xo +‘t.‘",
’ S % A

L -~

Let P, =(2&,yl) and P, = (xz,ye) be the points ‘on L givenby tet,

end.t =t , | respectively.® Prove that (8(Py 4B,) =J + me It, - tli -
]
A ball is rolling on & level floor along the 1ime through (16,2) and

(4,7) and in the directyon from the first point towards the second.
(The unit of length+is the foot.) Its speed is 26 ' feet per second.
Find parametric equations for its motion, measuring time from the ‘
instant vhen it is st (16, 5) . :

%




T+ Let 8 be a set of ‘points,in g plane. A point/ P is sometimes called
- ~acenter of 8 1if 8 1s symetric’about P . A parametric representa-
tion of & line may be used to prove that a poiit is & tenter of a set of

_ points. Let 8 .be the circle with equation x + ye =4 . Any line

t.hrough the originhasaperamtric representation xsht,ynpx, ,'
“with A + |.|. =1, Substituting these expressions for x and y in
- +the equation of the circle we get : '

| ' ) Kata-bnta

or ’ .

4,
Thus ', - f

t
t

'I'\)

Since the answer is ihdependent of -A and M .' » every.line through

the origin meets the circle in the points given.by t = 12' end t=2. -
»

These are equidistant from the origin. : ‘

(a) Show that the orfgin is a center for b x2 + ey = aabe

" (b) .Show that the erigin is & cénter for y = s.x3 .- (Discuss the case -
. .wvhen a > 0 and the case vhen a <0 .) '

"
-

(c) show that the or'i'g;ln is a center for y & 2 oo -
8. A set § of polnts in'a plane is called bounded 1f there i%:} rectangle
which contains S . Prove thatds boundea set in a plane hss at mst ‘
, one center. Is this also true for unbounded sets?
d. ‘Find, on the line through Py = (1,5) and Py = (5,8), two poinés at

. b 4
unit distance JSrom Pl _— o N

10. Find, on the line through A =_.(-3,5), a‘.nd B = (0,9\1&@1:0 points P and

Q such tbet .4(B,P) = d(B,Q) £ 5d(A,B) .

. ..
- \ ‘ -

5-7. Summary. Lo S |

We have investigated the relations between certain gdgmetr{c and algebraic
entities. The gemetrie objects were sets of points .not, as we have éaid, glven
to us 1n & basket but determines by certain conditions- or descriptions. " The -
cor;esponding' algebraic expressions were statements of equa.lity or inequélity.
The relations tetween them were approached through a coordinatization of the |
"space” in which the sets ‘were presented to us. ‘Then our kmowledge ‘and in-
genuity and experience led us to an algebraic degcription of the set, in the
terminology of ourscoordinate system. -

- 194 -




We have shdwn this process in detail in*a number of situaticns.
- applied parametric representatien 1? sithations involving angulqr dgsplacement

and motions along a circle or line.
perties or gecmetrie appearance, how is thxs reflected in ite analytic repre-
le, the set df points 1is symmetric in any way, ‘eould

sentetion? If, for e

We have

If a set of points has any spehial pro-

we tell that from its equation? 1If, on the other hand, some analytic repre-

sentetion shows a particular algebraic broperty, vhat is the geometric ceunter-
part? What would be the geometric effect of imposing certain restrictions on
the domain or range of the varjables that appear in the anglytic eepreeenta-
tdons? :

t * lo

A\

N
1

L

In our next chapter we w111 investigate 4in detail“any such relations_ "

between curves and their analytic representations.

Q

\]

Review Exercises

\

We describe certain sets of points.

(a)
(b)
(e)
(4)
(e)
(f)
(8)
(h)
(1)
(3)
(k)
(1)
(m)
(ni~
(o)

¢

You are asked to kive an analytic

descriptien of each. ) v
A1l points equidistant from the x- and y-axes.t
All points equidistant from the points A=(5,0) and B = (11,0) .
All points equidistant from ‘A = (5 0)- and C = (5,8) .
A1l pojnts equidistant from.,c = (5,8) and B ;\(1120) .
ALl points at distance 3 from C = (5,8) . ' ,
All points at distahce 3 from_phe line x =5 ., )
All points at distance 3 from the line ay = -2,
All points at distance 3 from the llne 3x - by + 7=
A1l ppiﬁts at distance h frcm.the line ¥ =k . . ¥
All points at dietance p from the line y =gq .- ‘
All points at distance d from the line ax + by N c=0.,
ALl points twice as far from A = (5,0) as from B = (11,0) . .
A1l points equidistant from the point C - (5,8) and the'x-axis.
All points equidistant from the point = (5,0) and the line x = 1,
All points equidistant from-the point D = (5,3) and the line
3x - by +7 = ] . '

F(p)

All points equidietant from the line ax

.point P = (r,s)

not o tha§ line,.

+

by + ¢ = 0 gnd the

4




. . - Y -
. . : $ . - - . : .
.

Vo R - . . : s

2. I.f A= ( 3,1) , B=(5,3) \C = (1,5) , find an gnaiytic representation

Lof . )
@R T (a)ﬁi? | IR O IR ,
)y B L T (e) BE | (b) &
() B -« () BT - (1) &
(1) “the interior of /ABC .
(x) the interior &f /BCA . ' ] oLy
R (1) the interior of [CAB ., : o ‘ _
. \(m) the'int&-;rior ‘éf" DABC : oL " a >
* " (n) the line through A and parallel to 1 o )
‘ (o) the line through. B and parallel to’ a. L :

(5) the line through C and parallel to . - '

(q) the line containing &ltit‘u&e ‘AD of AMBC . . ‘ L

(r) the line containing ﬂtitude BE of AMBC . . ‘

‘ - (s) thelline containing altitude @ of OABC . ! '
~  (t) the line containing the med.ian of AABC through A, |
'(u) the line containing the median of AABC. pm-ough B.

(v), the live contatning the meaden of AABC tyrough C . N
(v) the. bair of lineg th¥ough A" and pa.;‘a.lle}. to the axes. -P_ !
(x) s the perpendicular ‘bisector of* AB . Lo . »

(y) . the perp&{dicular bisector of BG . L v v ,
(2) the circleScontaining 4 , B ,.and C . « - o

3. The following expressions are a.nalytic descriptiong of certain sets., Y
are asked to describe each set in ‘rords, {ving its name, its location on
_the plane, and any specisd geometrif properties it may have, Sketch the

gmp7 of eachv .

BOR S R ' x-3l=5 "
( nd (bz §+%‘=5, ‘ l)fn51<l+ o
o) -6 . o) Ix-alcy .
s 2 ‘ '_ - ‘ J
.‘(d) X +y =16 (m) xy =0 - |
(e ¥+ 9" -i6 dn) (x - D(y +2) - 0




h-

‘o

5.

6.

palar coordinates’ below,

L

<

plane, and any' special geometric properties it may -have.

(@)

()

(4)
(e)

()

(&)

(n)
(1)

(3)

Writé the rélated yolar equatidn or inequality for each part of Exercise

<3

L]

r>3

b1
8<E

29

NORRY

r=2é_ g

r<g .’

~

lo - 2| -

[r-§[<.l

4 above.

(a), (x=1+t
;{.val#te;
(v) X =2t ,
y=t+2
, ,
(o) %“r%-r N
: 1
-
‘(d) ‘=x‘= t2 + t
y =43+ t2
(e) {x:té%
' J2 1
, fr— Y= t + EE

{;c

7
"
v
{

X
Y=
a

X,

() = = 'y

.“’f;égf

(m) r= s

. - cos 7,

(n) ,r = 5225

. -1 «

(o) r =
cos(6+E)

(p) r=—2
sin(6 - )

SO CER)

(r) r‘>-s_i%.? >

‘(5) r‘:co;?

(t) r=0.

’

= 3.sin t

=71 cos t
-

2+3cast
L -5 8in ¢t

=.2 sin t
=.8in 2t

- Give verbal descriptions of each.of the sets described analytically with
Give its name if available, its location on the

( o~
Kliminate the pérameter in each pair of parametric equations below,

(£)



. : - ‘ | ‘
) 7. A point moves on & line from A = (3 1) through B = (0,3) at ‘the rate
' A af 1 linear unit per second. Write parametric equations for its path,

using seconds as_ unit.s for the para.meter t- : ..

. L4 f )
8. A point moves on a line from the o n through point C = (7,24) at the
) rate’aﬁ 5 linear units per seconf, te pa.ra_.metric. equations’ for 1ts
; path, using mimxtes as units fof) the parameter t . ) v , 6

*

Q. A point A moves a.long a .Line with para.metric equations for its ' r'f'@“ e

l -
,.pa.t,h: ’x—-+3t,)

Poigt ‘B moves along a line with parametric o
y=3-%¢ . ' '

.equations for itd path: .3’”5" 2, pina a(a,3)* wien t =3, and
EE . y =11 +'¢ ,

- whépn t=5. ' »

-

-

€

X =X +‘lt”

10. The path.of P, has equatiéns { 1 : |
) -y =y +mt . ' :
i x = X, + Y/ t , | '
The path of Pé5 has equations ‘(
' N4 ' y =¥y hmpt -

E'btgress d(Pl,Pg)' when t =2 , in-terms of the constants ,;Ln these

equations. , - .
e . ~
- . .

11. Write parametric equationé for each path of a point around the rim off-a -~
8 clock if the path has the‘folj.cying deécriptian (a@xme unit radius): .

(4) starts 'at’ 12 o'clock position, and moves counte‘rclt:c}wise at 3 rps

*

- ’
[

. (re.vtlllutions per second).
(b) starts at 6 o'clock position and moves clockwise at 2 rps.

(c) Starts at b o"cloc}c position and moves counterclockwise at 1 IPS.
(§) starts at 9 tclock position and moves clockwise at, 4 rps.

(e) starts e.t‘8 S’clock position and moves courtterclockwise at % IpS.

o . 4 |
12, "-Find thé time and place of the first meeting, assuming & siffultaneous
start of the points deserjibed in Exercise 11:

-~

- . ] . - . )
~ (a) & and G o (f) % ang.d
(b) a and ¢ . (g)- b and -e {
(c) & andi_d . (h) ¢ and 4 .
‘ (d) 'a.and e , 4 . =« (1) = and es B

(e) b and ¢ ¢ - L r/g ('ﬁ-’c{ and e 9

] ‘ - S fﬁc .
" ) [ 2013. . ‘ N-_'(




13,

36,

15.
: e
. rim of a clock Iou are &skea to dascribe these pa.rts in words.’ Asﬁume

A point is rotating c cJ‘glmise at 2 r‘!)s at &, d1s#hnce 3 from tne
- paint (h,i) 'Y‘ﬂ ,a.n&‘brtie conditions foi‘ AtB pa.th. . : 7

., A& point is rotati;fg cloe]w:}%ed‘t l.rps at a dista.nce of 2 from. the point

d e
- (-1,0) . Fing ema.&.y.tic conc:]ions for its path, < « .

We give e.naly'ti,; &eseri,ptio 6f the paths of certain points ‘around the ©

.y .
t measured in minutasf. L ‘S‘-u - X (_‘ ' . . . . .
(a) - {x‘= k cos knt St S N\
L Yy =4 sin bxt C. ¢ OO ) o
5 . ' .
() {x = 6 cos(z + 6xt.) ‘ o o o,
=6 sin(% + 6xt) o . ‘ ] | .
[3 J' . ' R . ¢ T
(«) ‘{x = 10 cos(n - lOmt) . -
¥y = 20 sin(x - 1Oxt) T
: , . Val . - . . \.:)‘f‘
(d) {x = 8 cos(bnt + x) g SRR . EER
¥ = 8 sin(lxt +'n) ] ) t ‘
- i 3
(e) {x =,2 sin 2nt A e
Yy = 2 cos 2xt S e, . ' -

. . . “a
.

Find parametric representations for the ell{pses &escribed below:

. ! "/ ’ ,
(a) center at the origin, major axis 10 along the x.axis, minor axis
e 7 , ,

(b) center at the. origin, x-intercepts * 3 , y-intercepts * 4L .
On maJor axis horizontgi 4nd the- ellipse will Just fit between the
J o
circles x° + y2 =5 and e + y2 =6,

. , \ . - -
A wheeI with radius 12 inches, turning at the rate of 3  rps, is

rolling down & straight, level rcad. Assume a coordinate system as usual

and write parametric eqnatigns for . . . ’ -
’ . | : SRS
(a) a point P on its rim; - . Lo e :
(v) a point @ , six inches in from tgf rim.q (A challenge problem, )
Y. : - ‘ -

. . .
b -
- * “ - ¢ .
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. Tabie II» °

P

’ hﬁ;urai'Tfigonnmftric Functions kRgdigﬂ .

-

" Sine Cosipe - qugﬁgﬁ
£ 20,000,
0.020
 0.04d
0.060
0.080

.. 8,100

‘0.121
.ot /0.1h1

. 0.161
*0.182 ',
- 0.203«

:

10,000 .
0.020
0.040"

r

. om0 e
‘ln
»
.,
.

*a

™

OO0 O0O0
" = » B T T S )

X

‘ So 0099,
29588 Y8883

s
RN
‘_\ ‘16

0.245,,
0.266 - -

) 0.288 -

e .;'9.3091 -
0.531

7 0.35h4

0.376
0.399
0.423 -

0.L47

& 0.471

» & 0.495

M 0.521 ),

s+ 20,546
0.573
0.599
0.627
0.655 -
0. 684

0.71L

-

o.opy

L J

i 2

PR

Cotengent.

'*f*** -
" -ig,99
2ly, 99" .
15.65 .
© 12,47,
5 9.967
8.293 .
¢ Te096 4
6.197
5.495
4,933

L. 472
RS
3759

3.478

3.233

$.018

2,827

2,657

2.504
2,365

2.239
2.124.
2,018
" 1.921
1.-830

1.747
1.668-
1.595
1.526
1.462

1.401
1.343
-1,289
1.237
"1.187

1.140
1.095
1.052
1.011
0.971

0.933
0. 896
0.861
0.827
0.79k4




. | ' Table II -
Natural Trigonometrio Functions (Redian Meah?)

Cosine - Cétaﬂgent . ‘L

.

i

Red. * Sine ‘I‘angeﬁt | P
B . N . . o ] " ’.'
':912: ;o_.'égg ' " 0.606 - '1.'3%53 0.76L . .. .
94 - . ’ 0.590 - 1.369 0.730 e
.96 ’)8.819 4 0.5Tk " 1.h28 - 0,700 R
-.98 0.830 0.557  « 1.9l 0.671." - o
1.00° « . 0.841 - woo 0.51;0‘ - 1.557 - 0,642 P
1.02 , . 0.852 0.523 ~ _  1.628° ' '0,6lk e
1.04 * . 0.862 0.506 . 1.704- , 70,587 : :
{1.06 0.872 . T 0.480 1.784 - -0.560 -
'1.08 “hB82 . 0.471. 1.871 , 0.53% . - .
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